In [1]: from sympy import *

Example 1: Show the ODE $2 x+y^{\wedge} 2+2 x y y^{\prime}=0$ is exact and solve it

In [3]: $x, y=s y m b o l s(' x y ')$

```
M=2*x+y**2
```

$\mathrm{N}=2 * x * y$
$M y=\operatorname{diff}(M, y)$
$N x=\operatorname{diff}(N, x)$
print('My=',My,'and $N x=', N x, ' s o$ the equation is an exact equation.')
\# Solving using dsolve
$\mathrm{x}=$ symbols('x')
$y=$ Function ('y')
$\operatorname{deq}=2 * x+y(x)^{* *} 2+2 * x * y(x) * \operatorname{diff}(y(x), x)$
$y s o l n=d s o l v e(d e q, y(x))$
print('The solution to the ODE is',ysoln) \#NOTE Python solved explicitly for $y(x)$
$M y=2 * y$ and $N x=2 * y$ so the equation is an exact equation. The solution to the ODE is $[y(x)==-\operatorname{sqrt}(C 1 / x-x), y(x)==\operatorname{sqrt}(C 1 / x-x)]$

Example 2: Determine whether the IVP dy/dt $=\left(e^{\wedge} t \sin (y)-3 y\right) /\left(3 t-e^{\wedge} t \cos (y)\right), y(0)=p i / 4$ is exact or not. If so, solve it.
NOTE we first rewrite the equation as $\left(3 y-e^{\wedge} t \sin (y)\right)+\left(3 t-e^{\wedge} t \cos (y)\right) y^{\prime}=0$

```
In [5]: t,y=symbols('t y')
    M=3*y-exp(t)*sin(y)
    N=3*t-exp(t)*\operatorname{cos}(y)
    My=diff(M,y)
    Nt=diff(N,t)
    print('My=',My,'and Nt=',Nt,'so the equation is an exact equation.')
    # solve using dsolve
    t=symbols('t')
    y=Function('y')
deq=-(exp(t)*sin(y(t))-3*y(t))+(3*t-exp(t)*\operatorname{cos}(y(t)))*diff(y(t),t)
ysoln=dsolve(deq,ics={y(0):pi/4}) # NOTE that we can tell Python which method to use to solve!
# a list of hints are available at https://docs.sympy.org/latest/modules/solvers/ode.html#hint-fun
ctions
print('The solution to the IVP is',ysoln)
```

$M y=-\exp (t) * \cos (y)+3$ and $N t=-\exp (t) * \cos (y)+3$ so the equation is an exact equation.
The solution to the IVP is $3^{*} t * y(t)-\exp (t) * \sin (y(t))==C 1$

Example 3: Show that the ODE $y+\left(2 x y-e^{\wedge}(-2 y)\right) y^{\prime}=0$ is not exact, but that there is an integrating factor. Then solve the ODE.
In [13]: \# We will just use dsolve here
$\mathrm{x}=$ symbols('x')
$y=F u n c t i o n(' y$ ')
$\operatorname{deq}=y(x)+(2 * x * y(x)-\exp (-2 * y(x))) * \operatorname{diff}(y(x), x)$
ysoln=dsolve(deq,hint='1st_exact')
print('The solution to the ODE is',ysoln)
The solution to the ODE is $x^{*} \exp (2 * y(x))-\log (y(x))==C 1$

Example 4: Show that the ODE $\left(-y^{\wedge} 2-2 t y\right)+\left(3+t^{\wedge} 2\right) y^{\prime}=0$ is not exact, but that there is an integrating factor. Then solve the ODE.

In [2]: \# We will just use dsolve here
t=symbols('t')
$y=$ Function ('y')
$\mathrm{deq}=(-\mathrm{y}(\mathrm{t}) * * 2-2 * \mathrm{t} * \mathrm{y}(\mathrm{t}))+(3+\mathrm{t} * * 2) * \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})$
ysoln=dsolve(deq,hint='1st_exact')
print('The solution to the ODE is',ysoln) \#solved explicitly for y
The solution to the ODE is $y(t)==-(t * * 2+3) /(C 1+t)$
In [7]: matplotlib notebook

In [11]: \# ONE EXTRA EXAMPLE: Plot the solution to the IVP with $y(0)=1$ in domain [-5,5] and range [-20,20] ysoln=dsolve(deq,y(t),ics=\{y(0):1\}) yoft=-(t**2+3)/(-3+t)
\# NOTE: I am using an older version of Python where ics does not work, so just typing the function in here.
\# You obviously would use the .rhs option to get the function!
plot(yoft,(t,-5,5),ylim=[-20,20])

Out[11]: <sympy.plotting.plot.Plot at 0x7f4319a42a20>
In []:

