In [1]: from sympy import *

Example 1: Solve the ODE $y^{\prime \prime}+3 y^{\prime}+2 y=0$.

In [2]: \#Using the technique discussed in class:
t=symbols('t')
$y=F u n c t i o n(' y ')$
dsolve(diff(y(t),t,2)+3*diff(y(t),t)+2*y(t),y(t)) \#Note that expanding it g ives the same solution as in class

Out[2]: $y(t)=\left(C_{1}+C_{2} e^{-t}\right) e^{-t}$

Example 2: Solve the IVP $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=1, y^{\prime}(0)=2$

In [3]:

```
# Using dsolve and ics option
t=symbols('t')
y=Function('y')
ysoln=dsolve(diff(y(t),t,2)+diff(y(t),t)-6*y(t),y(t),ics={y(0):1, diff(y(t),
t).subs(t,0):2})
# NOTICE how y'(0) has to be entered. y is a FUNCTION, but diff(y(t),t) is
an expression which requires substitution
print(ysoln)
```

$E q(y(t), \exp (2 * t))$

Example 3: Solve the IVP $2 y^{\prime \prime}+7 y^{\prime}+6 y=0, y(0)=0, y^{\prime}(0)=-1$

In [5]:

```
t=symbols('t')
y=Function('y')
ysoln=dsolve(2*diff(y(t),t,2)+7*diff(y(t),t)+6*y(t),y(t),ics={y(0):0, diff(y
(t),t).subs(t,0):-1})
print('The solution to the IVP is',ysoln)
# NOTE that by properties of exponents, e^t^(3/2) = e^^(3/2t)
Eq(y(t), 2*exp(-2*t) - 2/exp(t)**(3/2))
```

In [7]:

```
matplotlib notebook
```

In [9]: yoft=ysoln.rhs plot (yoft, (t, 0, 10)) print('Note $y-->0$ as $t-->00$ which makes sense since both roots are negativ e.')

Note $y-->0$ as $t-->00$ which makes sense since both roots are negative.

In []: \square

