3.7-3.8: Mechanical and Electrical Applications

Examples:

A spring is stretched 10 cm by a force of 3 N . A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3 N when the velocity of the mass is $0.5 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down 5 cm below its equilibrium position and given an initial downward velocity of $10 \mathrm{~cm} / \mathrm{s}$, find the position u at any time t.

A spring is stretched 6 in by a mass that weighs 8 lb . The mass is attached to a dashpot mechanism that has a damping constant of $\frac{1}{4} \mathrm{lb} \cdot \mathrm{s} / \mathrm{ft}$ and is acted on by an external force of $4 \cos (2 t) \mathrm{lb}$. (a) If the mass is pulled 2 in below its equilibrium position and released, find the position u at any time t.
(b) Find the steady state of the system (i.e., how does the position behave for large values of t ?).

