In [1]:

```
from sympy import *
```

Example 1: $y^{\prime \prime}+y=0 ; y(0)=1 ; y^{\prime}(0)=0$

In [8]:

```
x=symbols('x')
y=Function('y')
# use dsolve with hint "2nd_power_series_ordinary": Result will be the firs
t 6 terms of the series (a0..a5)
# The O(x**6) implies that there are infinitely more terms not listed
deq=diff(y(x),x,2)-y(x)
ysoln=dsolve(deq,y(x),hint='2nd_power_series_ordinary',ics={y(0):1,diff(y(x
),x).subs(x,0):0})
print(ysoln.expand())
print('NOTE that Python did not solve for the coefficients. In general, th
e constant is a0 = y(0)')
print("and the coefficient of 'x' is a1=y'(0)")
```

```
Eq(y(x), C2 + C2*x**2/2 + C2*x**4/24 + C1*x + C1*x**3/6 + O(x**6))
```

NOTE that Python did not solve for the coefficients. In general, the const
ant is a0 $=\mathrm{y}(0)$
and the coefficient of 'x' is a1=y'(0)

Example 2: $y^{\prime \prime}+x y^{\prime}+3 y=0 ; y(0)=1 ; y^{\prime}(0)=2$

```
In [12]: x=symbols('x')
y=Function('y')
deq=diff(y(x),x,2)+x*\operatorname{diff}(y(x),x)+3*y(x)
ysoln=dsolve(deq,y(x),hint='2nd_power_series_ordinary')
print('The series solution is',ysoln.expand())
print("Again, C2 = a0 = y(0) and C1 = a1 = y'(0)")
```

The series solution is Eq(y (x), C2 - $3 * C 2 * x * * 2 / 2+5 * C 2 * x * * 4 / 8+C 1 * x-2 * C$ $\left.1 * x^{* *} 3 / 3+0\left(x^{* *} 6\right)\right)$
Again, $C 2=a 0=y(0)$ and $C 1=a 1=y '(0)$

Example 3: $\left(x^{\wedge} 2+1\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, y(0)=1, y^{\prime}(0)=0$

In [13]:

```
x=symbols('x')
y=Function('y')
# use dsolve with hint "2nd_power_series_ordinary"
deq=(x**2+1)*diff(y(x),x,2)+10*x*\operatorname{diff}(y(x),x)+8*y(x)
ysoln=dsolve(deq,y(x),hint='2nd_power_series_ordinary')
print('The solution is',ysoln.expand())
print("Again, C1 = a1 = y'(0) and C2 = a0 = y(0)")
```

The solution is Eq(y (x), C2 - 4*C2*x**2 $+10^{*} C 2 * x^{* *} 4+C 1 * x-3 * C 1 * x^{* * 3}+0$ (x**6))
Again, $C 1=a 1=y^{\prime}(0)$ and $C 2=a 0=y(0)$

In []:

