
Lecture for Week 7 (Secs. 3.10–12)

Derivative Miscellany II
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Related rates

“Related rates” means “applications of the
chain rule and implicit differentiation.”

“Applications” in this context means “prac-
tical applications” (i.e., word problems).
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Exercise 3.10.7

A lamp is at the top of a 15-ft-tall pole. A man
6 ft tall walks away from the pole with a speed of
5 ft/s. How fast is the tip of his shadow moving
when he is 40 ft from the pole? How fast is the
shadow lengthening at that point?
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Every nontrivial word problem’s solution
starts with some hard work specific to that prob-
lem, having nothing to do with the mathematical
concept being demonstrated. Often the necessary
reasoning is geometrical. For example, in Exer-
cise 3.10.5 we need to know the formula for the
surface area of a sphere; I chose not to do that
problem, because it is so similar to the sphere
problem that I gave so much attention to while
we were studying the chain rule. In the present
problem we need similar triangles.
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15

6

0 x y

Here x and y are coordinates, not lengths. The
key equation is

y

15
=

y − x

6
,
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which simplifies to y = 5
3x. So

dy

dt
=

5

3

dx

dt
=

25

3
= 8.33 ft/s.

That’s how fast the tip moves. The rate of
change of the length is

d

dt
(y − x) =

dy

dt
−

dx

dt
=

10

3
= 3.33 ft/s.
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Notice that we never had to use the num-
ber 40 ft, because the rates turned out to be
constants. That is an accident of this problem.
However, the point of general importance is that
it was necessary to consider a general x, not just
x = 40, to derive the relation between the rates
(derivatives). Do not plug in the instanta-

neous values of changing quantities until

you have finished differentiating!
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Exercise 3.10.33

A runner runs around a circular track of ra-
dius 100 m at speed 7 m/s. Her friend stands a
distance 200 m from the center. How fast is the
distance between them changing when the dis-
tance is 200 m?

Start by drawing a figure, of course!
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s

This time we need the law of cosines, the gener-
alization of the Pythagorean theorem to a non-
right triangle. Recall that the known sides are
100 and 200.

s2 = 1002 + 2002 − 2× 100× 200 cos θ.
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So s = 200 when 100 = 400 cos θ, or cos θ = 1
4 .

Don’t reach for the calculator’s arccos key yet —
we may not need it.

Differentiate the formula for s2 with respect
to t:

2s
ds

dt
= 40, 000 sin θ

dθ

dt
.

Two things to note: (1) Don’t plug in num-
bers for s and θ first. (2) Taking the square root
first would make the calculus harder, not easier.
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Now

sin θ =
√

1− cos2 θ =

√

15

16
,

so after dividing by 2s = 400 we get

ds

dt
= 100

√
15

4

dθ

dt
.

And the angular velocity is
dθ

dt
=

7

100
, so finally

ds

dt
=

7

4

√
15 m/s.
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The language of differentials

The key idea: f ′(a) tells us how to build a
linear approximation to f(x) that is good for x
near a.

f(x) ≈ fapprox(x) ≡ f(a) + f ′(a)(x− a).

(fapprox is the function whose graph is the tan-
gent line at a.)
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Recall that f ′(a) = lim
∆x→0

∆y

∆x
, where ∆x

(often called h) is a change in x and
∆y = f(a+ h)− f(a) is the resulting change in y.
Now let’s turn that equation around:

∆y ≈ f ′(a)∆x if ∆x is small.

You have been taught to interpret dy
dx

as d
dx

y,
an operation on the function y = f(x). Now we see

that, at least intuitively, dy
dx

can be broken up like

a fraction,
(dy)
(dx)

.
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“dx” is what ∆x is called when you are
announcing your intention to ignore powers of
∆x — or to ignore anything that vanishes faster
than ∆x as ∆x → 0.

(More precisely, one ignores things that vanish
even after being divided by ∆x; for example,

(∆x)3

∆x
= (∆x)2 → 0.)

In that approximation, ∆y equals dy.
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Thus dy
dx

is not just a notation for f ′, but
can be interpreted as a ratio of two numbers:
dx is any change in x, and dy is the correspond-
ing change in y when you adopt the tangent-

line approximation.

∆x and ∆y are called increments. dx and dy

are called differentials.
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Leibniz and other early mathematicians
thought of dx and dy as infinitesimal numbers —
so small that the approximate equation

∆y ≈

dy

dx
∆x

became exact:

dy =
dy

dx
dx.

Today we avoid that kind of talk in discussing fun-
damentals; we use limits instead. But thinking of

f ′ = dy
dx

as a ratio of small changes is still very
helpful in applying calculus.
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Example: Find a formula for the rate of
change of the area of a circle with respect to its
radius. (A plays the role of y, r the role of x.)

1. Derivation in the language of differentials.
As the radius goes from r to r+ dr, the area goes
from πr2 to π(r + dr)2. (I leave it to you to draw
the obvious diagram.)

dA = π(r + dr)2 − πr2

= π[r2 + 2r dr + (dr)2]− πr2.
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The terms without any dr factors cancel. We
neglect the second-order term dr2 because it is
very small. (Whereas dr is just “small”.)

dA = π[r2 + 2r dr + (dr)2]− πr2

= 2πr dr.

Conclusion:
dA

dr
= 2πr.

This kind of argument appears often in sci-
ence and engineering textbooks. Note that the dis-
tinction between dA and ∆A has been blurred.
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2. Careful restatement in the language of
difference quotients and limits. When the radius
changes from r to r + ∆r, the area changes from
πr2 to π(r +∆r)2.

∆A = π[r2 + 2r∆r + (∆r)2]− πr2

= π(2r +∆r)∆r.

Thus ∆A
∆r

= π(2r +∆r), and therefore

dA

dr
= lim

∆r→0
π(2r +∆r) = 2πr.
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The differential argument is just shorthand for
this.

Better than the linear approximation is the
quadratic approximation, which fits the graph, not
with the line that matches it best, but with the
parabola that matches it best:

f(x) ≈ f(a) + f
′
(a)(x− a) +

f ′′(a)

2
(x − a)

2
.

You can go on to even higher-degree polynomials,
called Taylor approximations. These are covered in
Chapter 10.
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Exercise 19, p. 228, extended

Use differentials to approximate
√
36.1 and√

40.
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We know that
√
36 = 6, so that is a good

starting point, a.

f(x) =
√
x , f ′(x) =

1

2
√
x
.

√
x ≈ f(a) + f ′(a)(x− a)

= 6 +
1

12
(x− 36).

√
36.1 ≈ 6 +

1

120
≈ 6.008333.

Check: 6.008332 = 36.10007. Pretty good.
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√
40 ≈ 6 +

4

12
≈ 6.333333.

Check: 6.3333332 = 40.11111. Not so good. The
approximation is better when x − a is smaller.
This method is not very useful for calculating

√
x

numerically unless x is close to a perfect square.

There are two different kinds of approxima-
tions (“≈”) in the calculations. Besides the dif-
ferential approximation there is roundoff error. (I
used Maple to do the arithmetic decimally.)
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Newton’s method

One needs a method for finding approximate
solutions of equations such as

tanx = x or x5 + 4x4 + 3x = 10,

for which ordinary algebra fails us. We can as-
sume that the equation has the form

f(x) = 0

(otherwise transpose all the terms on the right
side to the left).
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First, sketch the graph of f so that you can
guess roughly where the roots of f(x) = 0 are.
Newton’s method enables you to improve your
guesses. Suppose you guessed x0 but the correct
root is x∗. Slide down (or up) the tangent line
at x0 to its intersection with the horizontal axis.
That point, x1 , should be closer to x∗.
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We can derive the formula for x1 by differen-
tials. We don’t know what x∗ is, but we do know
that it is an exact root of f :

f(x∗) ≡ y∗ = 0.

Let y0 = f(x0) and calculate the differential
dy = f ′(x0)dx. That means

y∗ − y0 ≈ f ′(x0)(x∗ − x0)

for any point (x∗, y∗) on the graph near (x0, y0).
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Solve for x∗ , using y∗ = 0:

y∗ − y0 ≈ f ′(x0)(x∗ − x0)

⇒ x∗ − x0 ≈
−y0

f ′(x0)

⇒ x∗ ≈ x1 = x0 −
f(x0)

f ′(x0)
.

Yes, there will be trouble if f ′(x0) = 0 !
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If x0 was an OK guess and x1 was a good
approximation, then

x2 = x1 −
f(x1)

f ′(x1)

should even better. Keep going (iterate the pro-
cess),

xn+1 = xn −
f(xn)

f ′(xn)
,

until the answer is changing only in the highest
decimal places.
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When it works at all, Newton’s method
works very well; typically the number of deci-
mal places of accuracy will double at each step.
But if the graph is either very wiggly or very flat
(f ′ is small) near x∗ , Newton may have trouble
finding x∗ . The tangent lines then are almost
horizontal, so the algorithm may shoot an xn off
to a distant part of the graph, where its succes-
sors xn+m may converge to a different root or
not converge at all. The extreme case is where
one of the f ′(xn) turns out to be 0 and the pro-
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cess breaks down completely.

The secant method is slower than Newton’s
but more reliable in those troublesome cases. Cal-
culus books don’t usually mention it, because its
theory involves no calculus, just geometry. The
method is to find x1 and x2 so that f(x1) and
f(x2) have opposite signs. The intermediate value
theorem guarantees that there is a root x∗ between
them (if f is continuous). Construct the secant
line between those two points on the graph. Let
its intersection with the axis be x3 , a better guess
for x∗ . For the next step, use x3 in place of x1 or
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x2 (whichever had the same sign for f(x)). Iterate.
The formula is

xn+1 =xn
f(xn−1)

f(xn−1) − f(xn)

+ xn−1
f(xn)

f(xn) − f(xn−1)
.

Reference: F. S. Acton, Numerical Methods that
Work.
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Exercise (similar to 3.12.7)

Use Newton’s method to calculate
√
36.1

and
√
40.

I use the same numbers as in the previous ex-
ample to stress that differential approximation and
Newton’s method are two different things, even
though we used the former to derive the latter.
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When we’re computing square roots, in the
master formula

xn+1 = xn −
f(xn)

f ′(xn)

the function f(x) is not
√
x ! To find

√
a we

need to solve the equation

0 = x2 − a ≡ f(x).

So f ′(x) = 2x,

xn+1 = xn −
(xn)

2 − a

2xn

.
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I have implemented this in a Maple worksheet.
The process can be carried to any desired accu-
racy (up to the limit set by roundoff error) re-
gardless of whether a is close to a perfect square.
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