
Spring 1998
Maple Lab, Week 27

Projectile Drag Studied by Perturbation Theory

Maple tips for this lab:

1. The commands taylor and convert, described in Sec. 10.5 of CalcLabs, may be helpful.

2. Work in terms of Maple expressions, rather than Maple functions, as much as possible.
(If you do define a function, you need to consider whether it should be a function of t, of
k, or of both.)

3. Most of the differential equations that arise here are merely antiderivative problems, so
they are more easily solved with int than with dsolve.

4. If Maple evaluates an integral in terms of an unfamiliar function such as “arctanh”,
consult Sec. 6.7 of Stewart, especially the two boxes on page 416! (arctanh is the same
thing as tanh−1.) Also, the command convert(",ln); may help.

Review of the problem and the solution without drag: We return to the projectile
problem of Lab 25. At t = 0 the projectile is fired from (x, y) = (0, 0) with initial velocity
~v(0) = 〈vx(0), vy(0)〉 = vi〈cos θ, sin θ〉, where vi ≡ |~v(0)| is the initial speed. Assume that
vx(0) and vy(0) are both strictly positive (in other words, vi > 0 and 0 < θ < π

2 ). Note:
θ is a constant, parametrizing the initial data; it is not the polar coordinate of the vector
~v(t), which is a function of t. The subscript “i” stands for “initial”, “f” stands for “final”,
and “0” stands for “zeroth-order” — that is, the solution without drag.

When drag is neglected, the solution for the components of position and velocity is

x0(t) = vi cos θ t, y0(t) = vi sin θ t− 1
2gt

2,

vx0(t) = vi cos θ, vy0(t) = vi sin θ − gt.

Where (and when) does the projectile land? Setting y0(tf) = 0, we find that

tf =
2vi sin θ

g
, xf ≡ x0(tf) =

2v2
i sin θ cos θ

g
=
v2

i sin(2θ)
g

.

Therefore, given xf , you can find vi and θ that will enable you to hit that target. (In fact,
you can hold θ fixed and vary vi , or you can hold vi fixed (if it’s sufficiently large) and
vary θ, depending on the design of your launcher.)



Exercises: From Lab 25, the equations of motion with atmospheric drag included are

x′ = vx , y′ = vy , v′x = − k
mvx|~v|, v′y = − k

mvy |~v| − g.

A “perturbative” solution is an approximate solution constructed as a Taylor series in k;
in practice, this usually means just the first 2 or 3 terms in the Taylor series. To construct
a first-order (2-term) solution we write

x(t) = x0(t) + k
mx1(t), vx(t) = vx0(t) + k

mvx1(t),

and similar formulas for y and vy . The zeroth-order terms will turn out to be the solution
without drag; the first-order terms are unknowns to be found.

1. Using an appropriate Maple syntax, substitute the assumed form of the solution into the
equations of motion and expand out the right-hand sides as first-order Taylor polynomials
in k. (It is best to think of this as a hand calculation with Maple assistance. In particular,
it is not necessary to take t derivatives with Maple, nor to indicate the “(t)” argument
explicitly.) Verify that the zeroth-order terms cancel out if they are evaluated from the
drag-free solution given above. Divide the rest of the equations by k to get differential
equations satisfied by the first-order terms. For example, one of your four equations should
turn out to be

v′x1 = −vi cos θ
√
v2

i − 2gvi sin θ t+ g2t2.

2. Solve for vx1(t) and vy1(t), and hence for x1(t) and y1(t). The initial values x1(0) and
y1(0) should be 0 (since we are still firing from the origin), but the initial values vx1(0)
and vy1(0) are arbitrary constants of integration.

3. As in Lab 25, consider the case

vi = 100, θ =
π

4
,

k

m
= 0.0025.

Plot together the three trajectories: (1) the zeroth-order solution, (x0, y0); (2) the first-
order solution, (x0 + k

mx1, y0 + k
my1); (3) the numerical solution you found in Lab 25.

Accepting the numerical solution as approximately valid, pass judgment on the accuracy
of the perturbative solution.

4. Accepting the perturbative solution as valid (regardless of the outcome of Step 3), find
how to modify vi and θ (i.e., choose vx1(0) and vy1(0)) so that the projectile will hit the
desired spot xf . As previously remarked, there is more than one way of doing this, so you
will probably want to choose the one that corresponds to your project design.



Notice that the result has one huge advantage over the numerical solution: It is a formula
that can be used over and over for various values of xf and k

m , whereas the numerical
solution has to be recomputed each time. Unfortunately, the perturbative solution is not
accurate unless both k

m and t are sufficiently small. (And unfortunately, safety considera-
tions compel your project to use Ping-Pong balls, rather than, say, bullets.)

Extra credit exercises:

5. Find a second-order solution,

x = x0 + k
mx1 +

(
k
m

)2
x2 , etc.

Is the increased accuracy worth the effort?

6. How does a projectile behave in the thick atmosphere of the tiny planet Zarf? (That
is, g is small but k is not.) To get the zeroth-order solution, ignore gravity but not drag.
It is physically obvious that the zeroth-order motion is in a straight line [explain why], so
in this case vy0(t)/vx0(t) is a constant, equal to tan θ. This observation will enable you
to get a separable differential equation for vx0(t). Then construct a first-order solution,
x = x0 + gx1 , etc.

7. In the one-dimensional version of this problem,

http://www.math.tamu.edu/∼fulling/coalweb/airdrag.dvi,

to avoid a complication it was necessary to assume that the initial velocity was negative.
Why does that complication not arise in the two-dimensional problem for reasonable initial
data? (Firing the launcher straight up is considered unreasonable.)

8. Solve the one-dimensional problem exactly, and compare with the perturbative solution.
(The differential equation for the velocity is separable, but may require consulting an
integral table or Sec. 6.7 or Sec. 7.4.) You should find that as t→∞ the velocity approaches
the limit −

√
gm/k.


