Spring 1998

Maple Lab, Week 28

A Flask of Blood

Objective: This lab will improve your understanding of the ϵ - δ definition of a limit.

Review of Maple's equation-solving commands: Suppose you want to solve the equation $\frac{x}{\pi} + \sin x = 1$. You first enter the equation to make sure you have typed it properly:

```
>eq := x/Pi + sin(x) = 1;
```

You can then plot the left and right hand sides of the equation to see approximately where they intersect:

>plot({ lhs(eq), rhs(eq) }, x=-2*Pi..4*Pi);

You observe that there are three intersection points (solutions), one between 0 and 2, one between 2 and 4, and one between 4 and 6. To find the solutions more precisely, you might first try Maple's solve command:

>solve(eq, x);

Well, it seems (in Release 4) that Maple can't solve the equation exactly. So, use Maple's fsolve command to find approximate (numerical) solutions:

>fsolve(eq, x);

This gives only the solution between 2 and 4. (You can recognize it as π — an exact solution that **solve** did produce in Release 3!) After **fsolve** finds one solution, it stops. To find others, you need to add a range to the **fsolve** command to lead it to the solution you want:

```
>fsolve(eq, x=0..2); fsolve(eq, x=4..6);
Now you have all three solutions.
```

Exercises:

1. The flask of blood

You are working in a medical lab where they measure the volume of blood in a conical flask by accurately measuring the height of the liquid. A particular flask is 5 cm in radius and 20 cm high. You can see a picture of it by executing the following Maple plot:

```
>plot3d([r*cos(theta), r*sin(theta), 4*r], r=0..5, theta=0..2*Pi,
```

```
scaling=constrained, axes=normal, orientation=[30,75]);
```

The volume of a cone is given by

>V := 1/3 *Pi*r^2*h;

(Execute these commands as you read along.) For this cone, if the blood fills up to a height h, then the radius of the surface of the blood is

>r := h/4;

So the volume is:

>V;

Plot the volume as a function of the height.

Your medical supervisor says that the volume of the blood needs to be $V_0 = 40 \text{ cm}^3$. She asks you to find the height h_0 of the blood in the flask. So execute

>VO := 40;

and solve the equation $V = V_0$. Save the relevant root as h0.

Your supervisor now says that the volume of blood needs to be accurate to $\pm 1 \text{ cm}^3$. Let this "output accuracy" or "tolerance" be called ϵ :

>epsilon := 1;

Then she asks you how accurately the height of the blood needs to be measured. This "input accuracy" is called δ . You need to find δ so that if the height h is in the interval $(h_0 - \delta, h_0 + \delta)$ then the volume V will be in the interval $(V_0 - \epsilon, V_0 + \epsilon)$. Let's approach this problem graphically before getting into algebra. First execute

>Vp := VO+epsilon; Vm := VO-epsilon;

Add the horizontal lines at V_p and V_m to your plot of V. Then click with the mouse to find the values h_p and h_m where $V = V_p$ and $V = V_m$ respectively. (You can improve your results by restricting the domain in the plot to h=8..9 or even further.)

In your plot (with h restricted to [8,9]) you can see that V is contained in the interval (V_m, V_p) exactly when h is contained in the interval (h_m, h_p) . (Note: This would not necessarily be so if the function V(h) were not a monotonic (either increasing or decreasing) function.) Now recall that we are seeking the largest value of δ such that V(h) is in (V_m, V_p) when h is contained in $(h_0 - \delta, h_0 + \delta)$. Therefore, we are trying to find the largest value of δ such that the interval $(h_0 - \delta, h_0 + \delta)$ is contained in the interval (h_m, h_p) . Since h_p and h_m do not have to be equidistant from h_0 , δ must be the **smaller** of $\delta_p = h_p - h_0$ and $\delta_m = h_0 - h_m$.

To get an accurate value of δ , use **fsolve** to solve the equations $V = V_p$ and $V = V_m$ (saving the results as hp and hm), then use Maple to compute δ_p , δ_m , and $\delta = \min(\delta_p, \delta_m)$. (Maple has a min function that can be used here.)

Your supervisor now decides that the blood must be accurate to within ± 0.05 cm³. Repeat your calculations for this case. (You don't need to retype everything. Just change epsilon and reexecute the commands from that point on.)

The fact that you can compute a satisfactory δ for any ϵ is summarized in the statement that

$$\lim_{h \to h_0} V(h) = V_0$$

This limit means:

For every $\epsilon > 0$ there is a $\delta > 0$ such that

if the height h is in the interval $(h_0 - \delta, h_0 + \delta)$ (with $h \neq h_0$)

then the volume V will be in the interval $(V_0 - \epsilon, V_0 + \epsilon)$.

2. The famous trig limit

Consider the function $f(x) = \frac{\sin x}{x}$. >f := x -> sin(x)/x;

The function is undefined at x = 0. Maple agrees:

However, the function does have a limit as x approaches 0. To see this, plot the function >plot(f);

and use it to guess whether $\lim_{x\to 0} \frac{\sin x}{x}$ exists and, if so, what its numerical value is. Note: As far as Maple and graphics are concerned, your guess is truly a guess. When Maple plotted the function, it simply plotted some points and connected the dots. (To see these dots, click in the plot window menu on *Style* and *Point*.) So there is no guarantee that between 0 and the closest dot the function won't become much larger or much smaller. Of course, you know that for this well-known function that doesn't happen; but a computergenerated graph is not a proof of that.

Check that Maple agrees with your limit by executing
>Limit(f(x), x=0); value(");

This limit means:

For every $\epsilon > 0$ there is a $\delta > 0$ such that if x is in the interval $(-\delta, \delta)$ (with $x \neq 0$) then $\frac{\sin x}{x}$ is guaranteed to be in the interval $(1 - \epsilon, 1 + \epsilon)$.

Given that $\epsilon = 0.2$, find the largest δ such that if $0 < |x| < \delta$ then $\left|\frac{\sin x}{x} - 1\right| < \epsilon$. Again you can do this roughly by adding horizontal lines to your plot and using the mouse to identify the points x_p and x_m where f(x) leaves the interval $(1 - \epsilon, 1 + \epsilon)$. Then use **fsolve** to identify δ more accurately. (Comment on how this situation is different from the case of the flask.)