Choosing r objects from n objects,
or, Putting r objects into n boxes

	Repetition	No repetition
Ordered/ Distinguishable	Sequences (Arrangements)	Permutations
	n^{r}	$P(n, r)=\frac{n!}{(n-r)!}$
	Table-service order	Choosing seats
	Maxwell-Boltzmann particles	-
Unordered/ Indistinguishable	Combinations with repetition (Multisets)	Combinations (Subsets)
	$\binom{n-1+r}{r}=\frac{(n-1+r)!}{r!(n-1)!}$	$C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
	Fast-food order	Setting the table
	Bose-Einstein particles	Fermi-Dirac particles

References:

1. M. Townsend, Discrete Mathematics: Applied Combinatorics and Graph Theory, Benjamin/Cummings, Menlo Park, 1987, Sec. 2.3.
2. Grimaldi, 4th ed., Secs. 1.4 and 1.7.
(c) S. A. Fulling 2002
