The Master Theorem on the Asymptotic Behavior of Recursions Arising from Divide-and-Conquer Algorithms

Let $a \geq 1$ and $b>1$ be constants, let $s(n)$ be a given function, and let $f(n)$ be defined on \mathbf{N} by the recursion relation

$$
f(n)=a f(n / b)+s(n)
$$

(where n / b may be interpreted as either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$) together with suitable initial values. Then for large n :

1. If $s \in O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $f \in \Theta\left(n^{\log _{b} a}\right)$.
2. If $s \in \Theta\left(n^{\log _{b} a}\right)$, then $f \in \Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $s \in \Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if

$$
a s(n / b) \leq c s(n) \quad \text { for some constant } c<1
$$

for all sufficiently large n, then $f \in \Theta(s)$.

Source: T. H. Cormen, C. E. Leiserson, and R. L Rivest, Introduction to Algorithms, McGraw-Hill, New York, 1990, Secs. 4.3-4.4; notation modified for consistency with that of R. P. Grimaldi, Discrete and Combinatorial Mathematics.

