
Matrices and Graphs of Relations
[the gist of Sec. 7.2 of Grimaldi]

If |A| = n and |B| = p, and the elements are ordered and labeled (A =
{a1, a2, . . . , an}, etc.), then any relation R from A to B (i.e., a subset of A×B) can
be represented by a matrix with n rows and p columns: Mjk , the element in row j
and column k, equals 1 if aj R bk and 0 otherwise. Such a matrix is somewhat less
inscrutable than a long list of ordered pairs.

Example: Let A = B = {1, 2, 3, 4}. The relation

R = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (3, 4)}
has the matrix 


0 1 1 1
0 0 1 0
1 0 0 1
0 0 0 0


 .

Boolean arithmetic

Recall the operation tables for logical AND and OR:

∧ | 0 | 1
— – — – —
0 | 0 | 0
— – — – —
1 | 0 | 1

∨ | 0 | 1
— – — – —
0 | 0 | 1
— – — – —
1 | 1 | 1

Let’s compare this with arithmetical TIMES and PLUS:

× | 0 | 1
— – — – —
0 | 0 | 0
— – — – —
1 | 0 | 1

+ | 0 | 1
— – — – —
0 | 0 | 1
— – — – —
1 | 1 | 2

(If the addition is modulo 2, then the 2 in the crucial corner becomes 0.) We see
that the logical operations are identical to the arithmetical ones, except that “1+1”
must be redefined to be 1, not 2 or 0. Finally, notice that the logical relation of
implication is equivalent to “less than or equal” in this numerical representation:

−→ | 0 | 1
— – — – —
0 | 1 | 1
— – — – —
1 | 0 | 1
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Now recall (or learn, from Appendix 2) that multiplication of matrices is defined
by

(MN)ik =
∑

j

MijNjk

(i.e., each element of the product is calculated by taking the “dot product” of a
row of M with a column of N ; the number of columns of M must be equal to the
number of rows of N for this to make sense). Therefore:

Definition and Theorem: If R1 is a relation from A to B with matrix M1

and R2 is a relation from B to C with matrix M2 , then R1 ◦ R2 is the relation
from A to C defined by:

a (R1 ◦ R2) c means ∃b ∈ B[a R1 b ∧ b R2 c].

The matrix representing R1◦R2 is M1M2 , calculated with the logical addition rule,
1 + 1 = 1. (That is, “+” actually means “∨” (and “×” means “∧”). Note that this
logical matrix multiplication is easy to carry out: As soon as you find a term 1, you
can stop adding up the sum for that element.)

Proof:

a (R1 ◦ R2) c ←→ (a R1 b1 ∧ b1 R2 c) ∨ (a R1 b2 ∧ b2 R2 c) ∨ · · · ,

where all elements bj of B are considered as possible intermediate elements. When
translated into the matrix notation, this is precisely the matrix multiplication law.

In a situation (like the example R above) where no element is related to itself,
this theorem can be thought of in terms of electrical switches. Let A = B = C and
R1 = R2 = R. Then the matrix of R ◦ R is M2 (that is, MM). The question of
whether 1 (R ◦R) 4 is the question of whether, within R, it is possible to move
from 1 to 4 in exactly 2 “jumps”. In A there are two possible 2-step paths from 1 to
4, namely, 1 → 2 → 4 and 1 → 3 → 4. These paths are “in parallel” in the jargon
of electricians: if there is a wire along either of them, current can flow from 1 to 4.
But the two segments of each path are “in series”: both segments (such as 1 → 2
and 2→ 4) must be wired in order for current to flow along that path. We need to
check which of these potential “wires” actually exist in the relation R under study;
in the example, we easily see that current can flow from 1 to 4 by way of 3 but not
by way of 2, and that is enough to conclude that 1 (R ◦R) 4.

Warnings: For historical reasons, the notation for functions is inconsistent
with that for relations. If R1 and R2 are functions, then the relation R1 ◦ R2

is the same thing as the function R2 ◦ R1 . (Recall that in function composition,
the function on the left is the one that acts last.) Linear algebra students should
note that this discrepancy carries over to the matrix representations: When linear
functions are represented by matrices, the matrix for the “outer” function (the one
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applied last) stands on the left of the matrix of the “inner” function in the matrix
product; but in a relational matrix product the matrix of the “second” relation
stands on the right. In linear algebra, the rows of a matrix representing a function
are associated with the codomain and the columns with the domain; but when one
of our relations is a function (A → B), the rows of our relational matrix go with
the domain (A) and the columns with the codomain (B). Fortunately, however,
the rule for multiplying matrices is the same in both situations (rows on the left
times columns on the right). Note also that Grimaldi uses a bold-face 1 for a matrix
consisting entirely of 1s, whereas in linear algebra 1 usually means a square matrix
with 1s on the main diagonal and 0s everywhere off-diagonal (the identity matrix).
Finally, in linear algebra M ≤ N means that ∀~v[~v ·M~v ≤ ~v ·N~v], which is equivalent
to N −M being diagonalizable with all its eigenvalues nonnegative; this is not the
same as the definition we’re coming to next:

Definition and Theorem: M ≤ N means ∀j∀k[Mjk ≤ Njk] Then R is
transitive if and only if its matrix M satisfies M 2 ≤ M . (This follows from our
previous observation about the equivalence of ≤ and −→.)

In our example,

M2 =




1 0 1 1
1 0 0 1
0 1 1 1
0 0 0 0


 .

In particular, the number in the upper right corner confirms our earlier conclusion
that 1 (R ◦R) 4.

The other basic properties of relations are easy to recognize from M itself: R
is reflexive iff all the diagonal elements of M are 1. R is symmetric iff the matrix
is symmetric (Mjk = Mkj).

An even more visually graspable (but hard to type!) representation of a relation
(from a set A to itself) is a directed graph. We draw a dot for each element of A,
and an arrow from a1 to a2 whenever a1 R a2 . The relation is reflexive iff every
point has a loop attached; it is symmetric if the arrows always go both ways; it is
transitive if two points connected by a chain of arrows (all in the same direction)
are always also connected directly by a single arrow (in that direction).

An important application is the precedence graph for statements in a computer
program, where a R b means that a must be executed before b. If statement c uses
a variable defined in b, and b uses a variable defined in a, then it is obvious that
b R c and a R b. Since the precedence relation is transitive, it follows that a R c.
Such additional relationships could be sketched in while inspecting a graph drawn
to represent the more obvious elementary precedence relationships.
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