
Math. 302 (Fulling) 25 October 2002

Test B – Solutions

Name: Number:
(as on attendance sheets)

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Declare each of these inferences valid or invalid. Thoroughly justify your answers
(by counterexamples, formal deductions, or Venn diagrams with commentary).
(a) ∃x [p(x) ∨ q(x)] ⇒ ∃x p(x) ∨ ∃x q(x)

VALID. Here is a deduction in the Quine style:

1. p(c) → ∃x p(x) (existential generalization)
2. q(c) → ∃x q(x) (existential generalization)
3. ∗ ∃x [p(x) ∨ q(x)] (hypothesis)
4. ∗ p(c) ∨ q(c) (letting c be such an x ) [flag c ]
5. ∗ ∃x p(x) ∨ ∃x q(x) (by (1) and (2) — step called “constructive dilemma” by Grimaldi)
6. ∃x [p(x) ∨ q(x)] → ∃x p(x) ∨ ∃x q(x)

Here is the same argument in words: By hypothesis, there is some object that satisfies at least
one of the two conditions. So, at least one of the two conditions is satisfied by something! In Venn
diagram terms, a dot inside the union of two regions must be in one region or the other. (And vice
versa — so (a) remains valid if the arrow is reversed.)

And here is a slightly simpler formal deduction (gleaned from several student papers):

1. ∗ ∃x [p(x) ∨ q(x)] (hypothesis)
2. ∗ p(c) ∨ q(c) (letting c be such an x ) [flag c ]
3. ∗ p(c) ∨ ∃x q(x) (valid because q → r ⇒ p ∨ q lim p ∨ r )
4. ∗ ∃x p(x) ∨ ∃x q(x) (same reason)
5. ∃x [p(x) ∨ q(x)] → ∃x p(x) ∨ ∃x q(x)

(b) ∀x [p(x) ∨ q(x)] ⇒ ∀x p(x) ∨ ∀x q(x)
INVALID. Counterexample: Every integer is either even or odd, but it is not true that every integer
is even, nor that every integer is odd.

(c) ∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]
VALID. Since p → p ∨ q is a tautology, it is clear that ∀x p(x) → ∀x [p(x) ∨ q(x)] , and similarly
for ∀x q(x) . So under either of those hypotheses, the conclusion follows. (This could be made into
a formal deduction like (a), with the flag occurring at the final step of universal generalization.)

In Venn terms, if all the points are inside one region or the other, certainly they are all in the
union. (But that argument does not go the other way, hence (b) was invalid.)

2. (14 pts.) Prove that n4 ≤ 4n for all n ≥ 4 .
The claim is certainly true for n = 4 . We can use that as the base of an induction.

Assume that the claim is true for n . Look at

(n + 1)4 = n4 + 4n3 + 6n2 + 4n + 1

≤ 2n4 + 6n2 + n2 + 1 (since 4 ≤ n)

≤ 2n4 + 8n2 ≤ 2n4 + 2n3

≤ 4n4 ≤ 4 · 4n (by inductive hypothesis)

= 4n+1 (Q.E.D.)
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3. (15 pts.) Prove: A × (B ∪ C) = (A × B) ∪ (A × C) . Suggestion: Start with the
hypothesis (a, x) ∈ A× (B∪C) and apply various set-theory definitions and logic laws.

(a, x) ∈ A× (B ∪ C) ⇐⇒ (a ∈ A) ∧ (x ∈ B ∪ C)

⇐⇒ a ∈ A ∧ (x ∈ B ∨ x ∈ C)

⇐⇒ (a ∈ A ∧ x ∈ B) ∨ (a ∈ A ∧ x ∈ C)

⇐⇒ [(a, x) ∈ A×B] ∨ [(a, x) ∈ A× C]

⇐⇒ (a, x) ∈ [(A× B) ∪ (A× C)]

4. (28 pts.) In mini-poker the deck has 3 suits of 5 cards each (A-2-3-4-5), and a hand
consists of 3 cards. What is the probability of drawing each of these hands? (Please leave
the answers as fractions, not decimals.)

The question [parts (c)–(e)] is ambiguous because it was not made clear whether the ace can be either
high or low in a straight (as in standard poker) or only low. I will concentrate on the case “ace always
low” but state the “high-low” results as afterthoughts.

First observe that the total number of hands is

(
15

3

)
=

15 · 14 · 13
6

= 5 · 7 · 13 = 455.

This will be the denominator in each probability calculation.

(a) three of a kind (for example, three aces)
There is only one such hand for each rank, or 5 in all.

Probability =
5

5 · 7 · 13 =
1

91
.

(b) a pair (but not three of a kind)

We have 5 ·
(
3
2

)
[ranks × suits] choices for the pair, and then 4 ·

(
3
1

)
choices for the extra card, for

a total of 20 · 9 = 180 .

Probability =
22 · 32 · 5
5 · 7 · 13 =

36

91
.

(c) a straight flush
There are 3 suits, and for each suit there are 3 choices for the lowest card (since the highest straight
in this game is 3-4-5). So there are 9 straight flushes.

Probability =
9

455
(already in lowest terms).

[If the 4-5-A straight is also allowed, there are 4 choices for low card, hence 12 straight flushes and
P = 12/455 .]
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(d) a flush (all cards of the same suit, but not a straight flush)
There are 3 suits and

(
5
3

)
flushes of each suit, of which 3 are straight flushes:

3

[(
5

3

)
− 3

]
= 3[5 · 4/2− 3] = 3 · 7 = 21.

Probability =
3 · 7

5 · 7 · 13 =
3

65
.

[In the ace-high case there are only 18 flushes that are not straight, so P = 18/455 . Interestingly,
in this case straight flushes are not particularly rare compared to other flushes.]

(e) a straight (three cards in a row, but not a straight flush)
There are 3 choices for the lowest card (as we already saw) and 3 choices of suit for each of the 3

cards, yielding 3 · 33 = 81 . But we must subtract the 9 straight flushes, getting 72 .

Probability =
72

455

(already in lowest terms, since the prime factors of 72 are all twos and threes). [When aces can be

high, the calculation runs 4 · 33 − 12 = 96 , so P = 96/455 .]

(f) cards of three different suits
The first card could be anything; then there are 10 choices for the second, and 5 choices for the
third. But the order in which these cards came up doesn’t count, so we have overcounted by a factor
of 3! permutations. (

15

1

)(
10

1

)(
5

1

)
1

3!
=

15

3
· 10

2
· 5 = 53 = 125.

Probability =
53

5 · 7 · 13 =
25

91
.

Simpler argument (found on one student paper): For each suit, there are
(
5
1

)
choices of the card

representing that suit, so the number of such hands is 53 .

Checks:

(1) The number of hands with no pairs is

33 [suits] ·
(

5

1

)(
4

1

)(
3

1

)
[ranks] · 1

3!
[permutations] = 27 · 5 · 2 = 270.

Add the pairs and three-of-a-kind hands: 270 + 180 + 5 = 455 .
√

(2) The number of hands with exactly two cards of the same suit is

3

(
5

2

)
· 2

(
5

1

)
= 6 · 5!

2! 3!
· 5 = 52 · 4 · 3 = 300.

Add the flushes (including straight flushes) and the hands with all different suits: 300+(21+9)+125 =
455 .

√
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5. (14 pts.) Prove by induction:
(

d

dx

)n
ex2

= ex2
Pn(x) , where Pn(x) is a polynomial

of degree n containing only even powers of x if n is even and only odd powers of x if
n is odd.

Base: For n = 0 the assertion is ex2
= ex2

P0(x) , or P0(x) = 1 , which is indeed a polynomial of
degree 0 containing only even powers.

Induction: Assume the theorem for n and consider the derivative of order n + 1 . It is

d

dx

[
ex2

Pn(x)
]

= ex2[
2xPn(x) + P ′(x)

]
.

By the inductive hypotheses about Pn , the function in the brackets is a polynomial of degree n + 1
whose exponents differ from those of Pn by ±1 , so both the differentiation and the multiplication
by x change even powers to odd and vice versa. Therefore, Pn+1 has the asserted properties.

Remark: With extra work (or by specializing a gargantuan formula for iterating the chain rule called
Faà di Bruno’s theorem) one can show that

(
d

dx

)n

ex2
= ex2

bn
2 c∑

m=0

n! 2n−2m

m! (n− 2m)!
xn−2m .

Here bn
2 c is the smallest integer less than or equal to n

2 .

6. (14 pts.) Prove or disprove: A4 (B ∩ C) = (A4B) ∩ (A4 C) . (Recall that 4 is
the symmetric difference: K 4 L = (K − L) ∪ (L−K) .)

The assertion is false.
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The four marked regions make up A4 (B ∩C) . The two regions marked “ • ” make up (A4B) ∩
(A4 C) . The two regions marked “ ? ” are in A4 (B ∩ C) but not in (A4 B) ∩ (A4 C) . Thus
(A4B) ∩ (A4 C) ⊂ A4 (B ∩ C) but the reverse inclusion is false.

Here is a more deductive argument: If x ∈ (A4B)∩ (A4C) , then x is in either A or B but
not both, and x is in either A or C but not both. So either x is in A only (i.e., in the upper
bulleted region of the diagram), or x is in both B and C but not A (i.e, in the lower bulleted
region). Thus x is in either A or B ∩ C but not both. This proves the inclusion. On the other
hand, if x is in A∩B but not in C (i.e., in the left-side starred region), then x is in A but not in
B ∩C , so x ∈ A4 (B ∩C) ; but as we just saw, such an x is not in (A4B)∩ (A4C) , because it
is in both A and B . (The analogous remark applies to the other starred region.) This shows that
the sets are not equal.


