Test A - Solutions

Upload your answers, in order, as a single document.

Calculators may be used for simple arithmetic operations only!

1. (20 pts.) Let $A=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & -2 \\ 3 & 1 & 0\end{array}\right)$.

Calculate each of these, or declare it undefined:
(a) $A+B$
undefined
(b) $A B$
$\left(\begin{array}{ccc}7 & 2 & -2 \\ 1 & 1 & 4\end{array}\right)$
(c) $B A$
undefined
(d) A^{-1}
$\frac{1}{5}\left(\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right)$
(e) B^{-1}
undefined
2. (20 pts.) Find all solutions of each of these systems.
(a) $\left\{\begin{aligned} x+2 y & =2, \\ -2 x+y & =1 .\end{aligned}\right.$

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
-2 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 5 & 5
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Therefore, $y=1$ and $x=0$.
Alternative solution: Use Qu. 1(d):

$$
A\binom{x}{y}=\binom{2}{1} \Rightarrow\binom{x}{y}=A^{-1}\binom{2}{1}=\frac{1}{5}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)\binom{2}{1}=\binom{0}{1} .
$$

(b) $\left\{\begin{aligned} x+2 y-3 z & =0, \\ 2 x+y-z & =3, \\ x-y+2 z & =3 .\end{aligned}\right.$

$$
\left(\begin{array}{cccc}
1 & 2 & -3 & 0 \\
2 & 1 & -1 & 3 \\
1 & -1 & 2 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -3 & 5 & 3 \\
0 & -3 & 5 & 3
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
1 & 0 & \frac{1}{3} & 2 \\
0 & 1 & -\frac{5}{3} & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore,

$$
z \text { is arbitrary, } \quad y=\frac{5 z}{3}-1, \quad x=-\frac{z}{3}+2 .
$$

3. (21 pts.) Determine whether each set is linearly independent. If it is not, find an independent set with the same span.
(a) $\left\{\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right\}$
independent
(b) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)\right\}$

Write the vectors as rows:

$$
\left(\begin{array}{ccc}
1 & 0 & 3 \\
2 & -1 & 1 \\
0 & -1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & -5 \\
0 & -1 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & -4
\end{array}\right) .
$$

Therefore, the vectors are independent.
Alternative solution: Take the determinant of the matrix (or its transpose):

$$
\left|\begin{array}{ccc}
1 & 0 & 3 \\
2 & -1 & 1 \\
0 & -1 & -1
\end{array}\right|=1\left|\begin{array}{cc}
-1 & 1 \\
-1 & -1
\end{array}\right|-2\left|\begin{array}{cc}
0 & 3 \\
-1 & -1
\end{array}\right|=2-2 \times 3=-4 \neq 0
$$

so the vectors are independent.
(c) $\quad\left\{t^{2}-t, \quad t+1, \quad 5 t^{2}-4 t+1\right\}$

Here the vectors already appear as rows.

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
5 & -4 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, the vectors are dependent, and a basis for their span is $\left\{t^{2}-t, t+1\right\}$.
There are other correct answers for the spanning basis. In particular, if you carry the GaussJordan reduction out to the end, you get

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right),
$$

which prescribes the basis $\left\{t^{2}+1, t+1\right\}$.
4. (10 pts.) Calculate the determinant $\left|\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right|$.

Expanding in cofactors of either the first row or the first column, we get

$$
2\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|-\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right|=2 \times 3-1-1=4
$$

5. (Essay - 10 pts.) The set of all 3×3 matrices (with real entries) is a vector space, given the usual definitions of addition and scalar multiplication of matrices. What is its dimension? Explain.
The dimension is 9 . I don't put example essays in test keys.
6. (19 pts.) Find the inverse (if it exists) of the matrix $M=\left(\begin{array}{lll}0 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 2 & 1\end{array}\right)$.

Indicate what row operations you're performing.

$$
\begin{aligned}
& \left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & 0 & -\frac{3}{2} & 1
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & -\frac{3}{2} & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & \frac{1}{2} & 0 \\
0 & 1 & 0 & 2 & -\frac{3}{2} & 1 \\
0 & 0 & 1 & -1 & \frac{3}{2} & -1
\end{array}\right) \text {. }
\end{aligned}
$$

Therefore,

$$
M^{-1}=\left(\begin{array}{ccc}
-1 & \frac{1}{2} & 0 \\
2 & -\frac{3}{2} & 1 \\
-1 & \frac{3}{2} & -1
\end{array}\right) .
$$

