Test B - Solutions

Upload your answers, in order, as a single document.

Calculators may be used for simple arithmetic operations only!

1. (16 pts.) Classify each of these equations as linear homogeneous, linear nonhomogeneous, or nonlinear.
(a) $x-2 y+z-1=0$ (to be solved for $(x, y, z))$
linear nonhomogeneous
(b) $\frac{d y}{d t}+t^{2} y=0 \quad($ to be solved for $y(t))$
linear homogeneous
(c) $\int_{0}^{1} e^{2(x-t)} f(t) d t+f(x)=0$ (to be solved for f, a function of $\left.x\right)$
linear homogeneous
(d) $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}+e^{u}=0$ (to be solved for $\left.u(x, t)\right)$
nonlinear
2. (24 pts.)
(a) Find all the eigenvalues and eigenvectors of $M=\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)$.

Eigenvalues: $0=\left|\begin{array}{cc}3-\lambda & -2 \\ 2 & -2-\lambda\end{array}\right|=(\lambda-3)(\lambda+2)+4=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$. Hence the eigenvalues are 2 and -1 .

Eigenvectors for $\lambda=2$: (Suppress the column of zeros at the right.)

$$
\left(\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right)
$$

Thus the eigenvectors $\binom{x}{y}$ satisfy $x-2 y=0$, or $x=2 y$. A nice basis eigenvector is $\vec{b}_{1}=\binom{2}{1}$.
Eigenvectors for $\lambda=-1$:

$$
\left(\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right)
$$

Thus the eigenvectors satisfy $2 x-y=0$, or $y=2 x$. A nice basis eigenvector is $\vec{b}_{2}=\binom{1}{2}$.
(b) Use the results of (a) to solve the ODE system $\quad \frac{d x}{d t}=3 x-2 y, \quad \frac{d y}{d t}=2 x-2 y$, with arbitrary initial data $x(0), y(0)$.
Method 1: There is a basis of solutions of the form $\vec{b}_{j} e^{\lambda_{j} t}$. Thus the general solution is

$$
\binom{x(t)}{y(t)}=c_{1}\binom{2}{1} e^{2 t}+c_{2}\binom{1}{2} e^{-t} .
$$

Then solve

$$
\binom{x(0)}{y(0)}=\binom{2 c_{1}+c_{2}}{c_{1}+2 c_{2}}
$$

for the coefficients: $\quad c_{1}=\frac{2}{3} x(0)-\frac{1}{3} y(0), \quad c_{2}=-\frac{1}{3} x(0)+\frac{2}{3} y(0)$.
Method 2: Let $D=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$ and $U=\left(\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then $M=U D U^{-1}$ and

$$
\begin{gathered}
e^{M t}=U e^{D t} U^{-1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-t}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\left(\frac{1}{3}\right) \\
=\frac{1}{3}\left(\begin{array}{cc}
2 e^{2 t} & e^{-t} \\
e^{2 t} & 2 e^{-t}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
4 e^{2 t}-e^{-t} & -2 e^{-2 t}+2 e^{-t} \\
2 e^{2 t}-2 e^{-t} & -e^{2 t}+4 e^{-t}
\end{array}\right) . \\
\binom{x(t)}{y(t)}=e^{M t}\binom{x(0)}{y(0)} .
\end{gathered}
$$

The two methods agree. Notice that the effect of U^{-1} is just to solve the equations in the other method that relate c_{1} and c_{2} to $x(0)$ and $y(0)$.
3. (26 pts.) The linear function $K: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is represented by the matrix

$$
B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -2 \\
1 & -1 & 0
\end{array}\right)
$$

(a) Find the kernel of K.

Find the eigenvectors with eigenvalue 0 . (Again omit the column of zeros at the right.)

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -2 \\
1 & -1 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -1 \\
0 & 1 & -2
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & -5
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Thus the kernel contains only the zero vector.
(b) Find the range of K.

We want a basis for the column space of B, which we get by row-reducing the transpose of B :

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -1 \\
1 & -2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & -2 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -2 \\
0 & 0 & -5
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus the range is all of \mathbf{R}^{3}. We should have known this already from part (a):

$$
\operatorname{dim} \mathrm{ran}=\operatorname{dim} \operatorname{dom}-\operatorname{dim} \text { ker }=3-0=3 .
$$

(c) Is K injective? surjective? bijective? (List all the terms that apply.)

All three apply.
4. (16 pts.) The linear function $L: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is represented by the matrix $A=\left(\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right)$ with respect to the natural basis. Find the matrix representing L with respect to the basis

$$
\left\{\vec{v}_{1}=\binom{2}{1}, \quad \vec{v}_{2}=\binom{-1}{1}\right\}
$$

(Change the basis in both domain and codomain.)
Form a matrix out of the new basis vectors:

$$
U=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right), \quad U^{-1}=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right)
$$

U maps \vec{v}-basis coordinates to natural coordinates, so the matrix we need is

$$
\tilde{A} \equiv U^{-1} A U=\frac{1}{3}\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
3 & -1 \\
3 & -2
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)=\frac{1}{3}\left(\begin{array}{cc}
5 & -4 \\
4 & -5
\end{array}\right) .
$$

As a partial check, note that the trace and determinant are unchanged by the similarity transformation:

$$
\operatorname{tr} \tilde{A}=0=\operatorname{tr} A, \quad \operatorname{det} \tilde{A}=-1=\operatorname{det} A
$$

(This is necessary, but not sufficient, for our arithmetic to be correct.)
5. (18 pts.) Find an orthonormal basis for the span of

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{c}
\sqrt{3} \\
-\sqrt{3} \\
0 \\
0
\end{array}\right)
$$

by applying the Gram-Schmidt process to these vectors in the order given.

The normalized first vector is $\hat{u}_{1}=\frac{1}{2}(1,1,1,1)^{\mathrm{t}}$. Then

$$
\vec{v}_{2} \cdot \hat{u}_{1}=\frac{1}{2}, \quad \vec{v}_{2 \|}=\left(\vec{v}_{2} \cdot \hat{u}_{1}\right) \hat{u}_{1}=\frac{1}{4}(1,1,1,1)^{\mathrm{t}}, \quad \vec{v}_{2 \perp}=\vec{v}_{2}-\vec{v}_{2 \|}=\frac{1}{4}(3,-1,-1,-1)^{\mathrm{t}} .
$$

Normalize:

$$
\left\|\vec{v}_{2 \perp}\right\|^{2}=\frac{12}{16}=\frac{3}{4}, \quad \hat{u}_{2}=\frac{1}{2 \sqrt{3}}(3,-1,-1,-1)^{\mathrm{t}}
$$

Finally, $\vec{v}_{3} \cdot \hat{u}_{1}=0, \vec{v}_{3} \cdot \hat{u}_{2}=\frac{3 \sqrt{3}+\sqrt{3}}{2 \sqrt{3}}=2$, so

$$
\vec{v}_{3 \|}=\left(\vec{v}_{3} \cdot \hat{u}_{2}\right) \hat{u}_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
3 \\
-1 \\
-1 \\
-1
\end{array}\right), \quad \vec{v}_{3 \perp}=\vec{v}_{3}-\vec{v}_{3 \|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right) .
$$

Normalize: $\left\|\vec{v}_{3 \perp}\right\|^{2}=2, \hat{u}_{3}=\frac{1}{\sqrt{6}}(0,-2,1,1)^{\mathrm{t}}$.
Summary:

$$
\hat{u}_{1}=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \hat{u}_{2}=\frac{1}{2 \sqrt{3}}\left(\begin{array}{c}
3 \\
-1 \\
-1 \\
-1
\end{array}\right), \quad \hat{u}_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right) .
$$

To check, I row-reduced each basis and got

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

both times, so the spans are the same.

