### 1.4 Curves and Tangent Vectors

Vectors are associated not only with straight lines but also with curved lines. A curve can be described by a vector-valued function of a real variable,

$$
f: \mathbf{R} \rightarrow \mathbf{R}^{p} .
$$

Or, to look at the situation from the other way around, a function from $\mathbf{R}$ into $\mathbf{R}^{p}$ can be represented geometrically by a curve. (The notation $f: \mathbf{R} \rightarrow \mathbf{R}^{p}$ means that $f$ is a function that takes elements of $\mathbf{R}$ as input and yields elements of $\mathbf{R}^{p}$ as output.)

In fact, there are two different ways in which we can visualize such a function as a curve.

1. We can graph the function in a space of dimension $p+1$. For example, if $p=2$ and

$$
\vec{f}(t)=\binom{x}{y}, \quad \text { where } \quad x=\cos t, \quad y=\sin t
$$

then (for a certain orientation of the axes) the graph looks like this:


This graph is a helix. With modern computer software it is not hard to produce a genuinely three-dimensional image of the curve, which can be rotated on the computer screen to reveal the curve's geometrical nature more clearly than a single twodimensional projection on the printed page can do. But if we insist on visualizing functions this way as $p$ increases, we will quickly run out of dimensions.
2. We can represent the function as a parametrized curve in $p$-dimensional space. That is, for each value of the independent variable, $t$, we plot the point $\vec{f}(t)$ in $\mathbf{R}^{p}$. For the previous example the curve is a circle:


We can think of each point as being labeled by the value of $t$ that maps into it, but note that there could be more than one such value. A 3-dimensional example is

$$
\vec{g}(t)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \text { where } \quad x=\cos t, \quad y=\sin t, \quad z=t
$$

The curve in this case is the same helix as before, with the $t$-axis relabeled as $z$-axis. Only its interpretation has changed, and it is important to understand the conceptual difference. In one case there are 3 variables, in the other there are 4 (three dependent and one independent).

We can define the derivative of a vector-valued function by taking the ordinary derivative of each of its coordinates:

$$
\vec{f}^{\prime}(t)=\left(\begin{array}{c}
f_{1}^{\prime}(t) \\
f_{2}^{\prime}(t) \\
\vdots \\
f_{p}^{\prime}(t)
\end{array}\right)
$$

(A more profound definition will come later.) For our circle,

$$
\vec{f}^{\prime}(t)=\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\binom{-\sin t}{\cos t}
$$

If $t$ has the interpretation of time and $\vec{x}=\vec{f}(t)$ that of position, then $\vec{f}^{\prime}(t)$ is the velocity at time $t$. A geometrical interpretation of $\vec{f}^{\prime}$ is as a tangent vector to the parametrized curve, with length proportional to the "speed" at which the curve is traced out by the given parametrization. Customarily one thinks of the vector $\vec{f}^{\prime}\left(t_{0}\right)$ as being attached to the corresponding point, $\vec{x}_{0} \equiv \vec{f}\left(t_{0}\right)$, on the curve; see the sketch of the circle above. (Note that this point then becomes the origin as far as addition, etc., of vectors of this sort is concerned.) Just as the derivative of an ordinary real-valued function is used to construct the tangent line to the graph of the function, the parametric equation of the tangent line to the graph of $\vec{f}$ at $t_{0}$ is

$$
\begin{equation*}
\vec{x}=\vec{f}\left(t_{0}\right)+\left(t-t_{0}\right) \vec{f}^{\prime}\left(t_{0}\right) . \tag{1}
\end{equation*}
$$

This line in $\mathbf{R}^{p+1}$ can be thought of as the "best straight-line approximation" to the graph in the small neighborhood near $\left(t_{0}, \vec{x}_{0}\right)$. One can also think of (1) as a parametric equation of a line in $\mathbf{R}^{p}$ (through the point $\vec{f}\left(t_{0}\right)$, along the tangent vector $\vec{f}^{\prime}\left(t_{0}\right)$ ); this is the tangent line to the parametrized curve.

The numerical significance of the tangent vector is this: When $\vec{f}^{\prime}\left(t_{0}\right)$ is multiplied by a small number $d t \equiv t-t_{0}$, the result is a vector $d \vec{x}$ that tells approximately how $\vec{f}(t)$ is displaced from $\vec{x}_{0}$. This is an approximation because the curve is being approximated by
its tangent line at $\vec{x}_{0}$ (or, because the graph of $\vec{f}$ is being approximated by its tangent line at $\left.\left(t_{0}, x_{0}\right)\right)$.

If $\vec{f}^{\prime}\left(t_{0}\right)$ happens to be the zero vector, then (1) does not define a line. However, it is still true that (1) tells approximately how $\vec{f}(t)$ changes as $t$ moves slightly away from $t_{0}$. (That is, $\vec{f}(t)$ is approximately constant in that case!) The fact that (1) is not a line does not necessarily mean that the curve, as a geometrical object in $\mathbf{R}^{p}$, does not have a tangent line at that point; see Exercises 1.4.4 and 1.4.5.

Later we will see how to generalize all these considerations when the independent variable of the function is also multidimensional (see Secs. 2.4 and 3.3-5). A different kind of generalization is to functions whose values $\vec{f}(t)$ lie not in $\mathbf{R}^{p}$ but in some more general space of vectors, such as those in Examples 1, 3, and 4 of Section 1.1. We'll return to this topic in Sec. 6.3 after building up enough background concepts.

## Exercises

1.4.1 Calculate the derivative $\vec{g}^{\prime}(t)$ for the helical curve in the text. Use it to find a parametric representation for the tangent line to the curve at the point where $t=\frac{\pi}{3}$.
1.4.2 Construct the tangent line at $t=\frac{\pi}{3}$ to the circular curve in the text $(x=\cos t, \quad y=$ $\sin t)$. What is the relationship between this line and the one in the previous exercise?
1.4.3 A particle is forced to move along the trajectory $\vec{h}(t)=\left(t^{2}, 1+3 t, e^{2 t}\right)$. At time $t=2$ the particle is released from the curved track, and therefore moves off along the tangent line at the constant velocity $\vec{h}^{\prime}(2)$. Where is the particle at time $t=3$ ?
1.4.4 Consider the curve $\beta(t)=\left(t^{5}, t^{3}\right)$ in $\mathbf{R}^{2}$.
(a) Show that at the point where $t=0$, the equations of this section define a tangent vector but not a tangent line.
(b) Find a reparametrization of the curve (define a new variable $\tau=\rho(t)$ via some increasing function $\rho$ ) that enables the tangent line at the origin to be constructed in the usual way.
1.4.5 Consider the curve $\beta(t)=\left(t^{2}, t^{3}\right)$ in $\mathbf{R}^{2}$.
(a) Show that at the point where $t=0$, the equations of this section define a tangent vector but not a tangent line.
(b) Show that this curve does not have a tangent line at the origin.
1.4.6 Consider the differential equation $\frac{d^{2} y}{d t^{2}}+\omega^{2} y=0$, where $\omega$ is a parameter (independent of $t$ ), with initial data $y(0)=1, y^{\prime}(0)=-2$.
(a) Find the solution, $y(t)$. (Assume that $\omega$ is real and positive.) As $\omega$ varies, the solution moves along a curve in an infinite-dimensional space of functions. (Think of each function $y(t)$ as a single point on this curve. Keep in mind that the parameter along the curve is $\omega$, not $t$.)
(b) Find the derivative of the solution with respect to $\omega$ at $\omega=2$. This function plays the role of tangent vector to the curve of solutions.
(c) Use the result of (b) to construct an approximation to the function $y$ when $\omega=$ 2.15. This is a point on the tangent line to the curve of solutions at the point labeled by $\omega=2$.
(d) Appraise the accuracy of the approximation you got in (c). (You can use a computer or a graphing calculator to plot the exact and approximate solutions as functions of $t$.) Notice the difference between what happens at small $|t|$ and at large $|t|$.

