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1.2 Lines and Planes

When dealing with R3 or with physical space modeled by R? (see the first two ex-
amples in Sec. 1.1), it is convenient to represent the different coordinates of a vector by
different letters, thereby minimizing the use of subscripts:

Z=(z,y,z).

Often one deals with problems that are essentially two-dimensional; then the z component
can be dropped:
7= (r,y) € R%.

Once the origin of a coordinate system in physical space has been fixed, each point in
space can be identified with the vector with head at the point and tail at the origin.
As you know, a (straight) line in R? can be defined by an equation of the form

ar + by = c, (1)

where a, b, and ¢ are constants. (Obviously, the equation is not unique, since all three
constants can be multiplied by a nonzero number without changing the set of solutions
(z,y).) Let us call this the equation form of a line. (If b is not zero, (1) can be rearranged
into the “functional” form, y = mz + d.)

There is, however, another, equally good, way of representing a line. Introduce a new
variable, ¢, which ranges through all the real numbers (—oo < t < o0). Consider (for
example) the functions

T =3t — 2, y = 2t.

Plotting the points (x,y) on graph paper for various values of ¢, one easily sees that they
form a line. We can put the coordinates together in vectorial form:

[T\ [ 3t—2
= (1) =(""). (*
Using the definitions of vector addition and multiplication, we can rewrite this as
- (3 —2
=t ( 2) + ( 0 ) .

Thus each point on the line can be obtained by adding a fixed, or constant, vector to an
arbitrary multiple of another fixed vector. The general case is

7 = tii + & 2)

(where vectors 4 and % are fixed, and ¢ and Z are variables). This is called the parametric
form of a line (¢ being the “parameter” involved).
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Lines and planes 1.2

NOTATIONAL REMARK: In the foregoing paragraph we have begun the practice of
writing vectors as columns of numbers instead of rows. This made the equation (x) easier
to read by separating the two coordinate formulas visually. Later (Secs. 2.4 and 3.2) we
will encounter a more important reason for using columns, when a distinction will be made
between two kinds of vectors, one written as columns and one as rows. On the other hand,
column vectors are difficult to typeset and use up a lot of paper, so it is quite common to
revert to the row notation when there is no danger of confusion.

Example 1. What is the equation form of the line (x)?
SOLUTION (Method 1): Solve one of the coordinate equations for the parameter, and
substitute into the other coordinate equation. Since t = %y, we have

x:%y—Q,

which can trivially be rearranged into the form (1).

Before giving a second method for solving this problem, we remark that if #y in (2)

is the zero vector,
> (0
=)

then the line passes through the origin in R?. (On the other hand, if #, # 0, the line may
pass through the origin anyhow. See Exercise 1.2.11.) In this case the equation form is

O=arx+by=a-7.

That is, the vector @ = (a,b) is perpendicular® to all the vectors Z making up the line. In
the more general situation (1), the corresponding statement is that @ is perpendicular to
the vector joining any two points on the line.
PROOF: Let 7y = (x1,¥y1) and &9 = (x2,y2) be two points on the line. Then their
coordinates satisfy
ari + by1 = c, axrs + bys = c.

Subtract these two equations to get
CL(.CI?l — 1'2) -+ b(y1 — y2> =0.

That is, #1 — 2 (the vector with head at Z; and tail at Z3) is perpendicular to @.

On the other hand, in the notation of (2) the difference between two vectors #; and
Zo on the line is always a multiple of . Thus # is a vector tangent to the line, and «
must be perpendicular to d. Tt follows (take the dot product of equation (2) with @) that
a-¥=d-xy, and therefore the ¢ in (1) equals a - Zy.

* The words “perpendicular”, “normal”, and “orthogonal” are all equivalent when applied

to vectors, lines, or planes. (“Orthogonal matrix” means something else, however, as will be
explained in due course.)
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Theorem 1: In R? the vectors

(3) o ()

are perpendicular. (One is obtained by rotating the other through a right angle.)

This is the vectorial version of the familiar theorem, “T'wo lines are perpendicular if
and only if the product of their slopes is —1.”

SOLUTION TO EXAMPLE 1 (Method 2): Since @ = (3,2), a vector perpendicular to it
is @ = (2,—3).f Then
@ %o =(2,-3) (~2,0) = —4,
so an equation for the line is
20 — 3y = —4.

(This is equivalent to the result of the first method.)

Example 2. Find a parametric representation of the line = + 7y = 2.
SOLUTION: Let y =t. Then x = —7t + 2. So the line is

() () 2)

Note that there are many other correct answers, because our initial step was rather arbi-
trary. We could have taken x = ¢, or y = 2t + 5. The result would have been the same
line, but with a different labeling of points by numbers ¢.

The parametric representation (2) makes sense in space of any dimension, not just in
R2. (The same cannot be said for (1); we return to that problem later.)

Example 3. Find a parametric form of the line in R3 through the points (3,2, 4)
and (1,1,-1).

SoLUTION: The vector difference between the two points, (2,1,5), is parallel to the
line and is therefore a suitable #. The line passes through (1,1, —1), so that is a suitable Zy.
Therefore, we can write

Z=1t(2,1,5)+ (1,1,-1),

or
r=2t+1, y=1t+1, z =05t — 1.

To check, we see that we recover the two original points by taking t =1 and ¢ = 0.

The analogue of (1) for planes in R is

ax + by + cz = d. (3)

T (—2,3) would do equally well in the role of @. But you must use the same @ on both sides of
the equation @ - ¥ = d - 7y .
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Lines and planes 1.2

Planes also have parametric representations (which may be less familiar from elementary
courses than the previous material in this section). Since a plane is a two-dimensional
entity, one needs two independently varying parameters in order to sweep out all the
points on it. It is not hard to guess that the correct analogue of (2) is

f:S’Jl —i—tﬁQ—Ffo, (4)

where Z( is a point in the plane, and %, and us are vectors tangent to the plane. We will
demonstrate this with a sketch and with several examples.

(=]}
£
=

Example 4. Find the parametric form of the plane
z—3y+z2=0.

SOLUTION: Choose y = s and z =t and solve for x as 3s —t. Then

35—t 3 —1
f: S = S 1 +t O
t 0 1

Example 5. Find the equation form of the plane
Z=s(5,0,—1)+t(2,2,0).

SOLUTION: By analogy with the previous discussion of lines in R?2, it is clear that
the equation must be of the form 7 - ¥ = 0, where 7 is a vector perpendicular to the given
i1 = (5,0, —1) and iy = (2,2,0). The main problem is finding such a vector.

Method 1: With the notation of (3) in mind, let 7 = (a, b, ¢). Write out the conditions
of perpendicularity:

n-1u; =ba—c=0, n-Us = 2a+ 2b = 0.

11



Lines and planes 1.2

Since any perpendicular vector will do, we can choose one coordinate arbitrarily (but not
0), say ¢ =5 (to avoid fractions). Then a =1 and b = —1:

i =(1,-1,5).

In other words, the plane is x — y + 5z = 0.
Method 2: The analogue of Theorem 1 for three dimensions is provided by the vector
cross product:

1]k T2Y3 — T3Y2
TXY=|x a0 w3|=| T3Yy1 —T1Y3
Y1 Y2 Y3 T1Y2 — T2Y1

(The determinant notation here will be explained in Sec. 2.5, if you are not familiar with
it.) The cross product of two vectors is always perpendicular to both of them. If ¥ and
i/ are not parallel to each other, then & x ¥ is not zero. In our plane problem, therefore,
U1 X Us is suitable for use as 1. We calculate

7k 2
Uy XU =15 0 —-1|=1]| -2
2 2 0 10

This is not the same vector 7 we got with the other method, but that is not a problem:
The two vectors are proportional, and (3) can be multiplied by any constant (on both
sides, of course!) without changing the plane.

Example 6. Find a parametric form of the plane passing through the points (1,0, 0),
(2,2,2), and (—1,0,6).

SoLUTION: The difference between any two points on the plane is a vector parallel to
the plane, therefore a suitable candidate for u; or uy. We arbitrarily choose to subtract
the first given vector from each of the other two:

i =(1,2,2), i =(-2,0,6).

Let us also choose the first vector as Zy. Then

1 -2 1 s—2t+1
Z=s| 2|+t O | +0]| = 2s
2 6 0 2s + 6t

Example 7. Find the equation form of the plane in the previous example.

SOLUTION: Reasoning as we did for lines, we see that the equation is 7 - ¥ = d, where
7 is perpendicular to the differences between any points in the plane (a clumsy vectorial
way of saying “perpendicular to the plane”), and d = 7i - ¥y for any point &y in the plane.
Therefore, it is easy to get these ingredients from the parametric form found in the previous
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example. By either of the methods in Example 5 we find that @ = (6, —5,2) is a vector
perpendicular to @; and us. Using the Ty in Example 6, we get n - g = 6. Thus the
equation of the plane is

6x — Hy + 2z = 6.

We summarize the principles used in solving these examples in the following theorem.

Theorem 2: In R3, the parametrized plane (4)
T = stiy + tiiy + To
consists precisely of all the points satisfying the equation (3)
n-¥=d,

where 7 is any nonzero vector perpendicular to @ and @y, and d = 7 - Zy. (Here it is
understood that @ and iy are not zero and are not parallel to each other.)

PROOF: We must show that the set of points (4) is the same as the set of points
satisfying the equation (3). Therefore, we check that each set is a subset of the other one.

(i) If Z is of the form (4), and 7i and d are as described, then taking the dot product of
(4) with 77 indeed yields 77 - & = d.

(ii) If Z; and &5 are two solutions of (3), then #; — &5 is perpendicular to 7. (The proof of
this is the same as that of the corresponding statement for lines, given earlier.) Since
Ty solves (3), it follows that every solution & can be written as

— — — —

=2+ (¥ — Zo) = T + 4,

where u -7 = 0. As in Example 4, it is easy to see that there will always be a two-
parameter family of vectors u satisfying this perpendicularity condition. Thus the
solution space of (3) can be represented in the form (4) for some @; and @y. It is
geometrically obvious that these can be chosen to be the same u; and s that we
started from; a formal proof of this requires some concepts that will be developed in
later chapters.

We have shown that (1) and (2) are alternative descriptions of lines in two-dimensional
space, and that (3) and (4) are alternative descriptions of planes in three-dimensional space.
We observed that lines in R? also have the parametrical representation (2). It is natural
to ask whether a line in three dimensions has an equation form, analogous to (1) and (3).
Since a line has only one free parameter, it is clear that there must be two conditions
relating the three coordinates of a point on the line. In fact, since the intersection of two
planes is a line (unless the planes are parallel), a line will be defined by two equations of
the type (3). We leave further investigation of this situation to the exercises.
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1.2.1

1.2.2

1.2.3
1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

Exercises

Express in parametric form (& = tud + Z):

(a) The line through the origin in R? parallel to the vector (1,0, 1).
(b) The line in R? through the points (1,0) and (0, —1).

(¢) The line through (2, 3) parallel to the vector (1,2).

(d) The line through the points (1,5,7) and (2, 10, 14).

Find an equation of the form ax + by = c for these lines in R2.

(a) The line through the points (4,7) and (2, —1).

(b) The line with parametric equation & = ¢(1,1) + (4, —1).

(c) The line through the origin parallel to (5,1).

(d) The line with parametric equation = ¢(0,1) + (=2, —1).
Express in parametric form the plane defined by the equation 9x — 3y + z = 2.

Let 7 = (—1,0,2). The equation 7 - ¥ = 5 defines a plane in R3. Express the plane in
the parametrized form & = su; + tus + X .

Find an equation (ax + by 4 cz = d) for:
(a) The plane with parametric form # = s(1,0, —1) + ¢(2, 1, 2).
(b) The plane through the origin perpendicular to (2,2, 1).

Find both a parametric form and an equation form for the plane passing through
(1,0,0), (1,1,1), and the origin.

Express in equation form the plane whose parametric form is

7=s(1,-1,2) +£(2,2,2) + (5,0,2).

Find an equation and a parametric representation for the plane passing through the
points (1,0,1), (2,3,1), (5,4,5).

Find an equation and a parametric representation for the plane perpendicular to
7i = (3,1,1) and passing through (4,7, —1).

Prove Theorem 1 (including the statement in parentheses). HINT: Besides perpendic-
ularity, what does “rotation through a right angle” entail?

Suppose that the line & = tu + Ty passes through the origin, but nevertheless 7y is
not 0. How are @ and o related in this situation?

Give an example of a plane & = sty + tis + Z such that (1) the plane passes through
the origin, and (2) & is not 0 and is not parallel to either @ or s .
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1.2.13

1.2.14

1.2.15

1.2.16

1.2.17

The analogue of Theorem 2 for a line in R? was not stated formally as a theorem:;
you have to search through the expository text to find all the relevant conclusions.
Summarize them formally, in analogy with Theorem 2.

In the notation of Theorem 2, show that if 77 has length 1, then |d| is the distance of
the plane from the origin.

The intersection of the planes
r+y+z=2 and r—2y+2=0

is a line in R3. Find a parametric representation of this line. (Suggestion: Set the
coordinate z equal to the parameter ¢.)

Characterize the line & = ¢(1,0, —1) by a pair of equations, 7i; - Z = 0 = 7iy - . (Find
two distinct planes containing the line. There are many different correct answers!)
Let & = (1,0) and ¥ = (2,1). On a piece of graph paper plot and label the points
t¥ 4+ (1 —t)y for t = —0.5, 0, 0.2, 0.5, 0.9, 1, and 1.2. From this example, formulate
a general principle. (What is special about the points corresponding to 0 < ¢ < 17
These points are called convex combinations of the two given vectors.)
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