Math. 311 (Fulling) 13 February 2002
Test A — Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (12 pts.) Find the inverse (if it exists) of the matrix M = (? 2) .

Reduce the augmented matrix:

38 1 0\[nje2 /1 3 0 1
—
130 1 3810
[mﬂp]3u1(1 3 0 1) S (1 0 3 —8)

Therefore,

10
It is easy to check that MM~ = ( ) .

0 1
d 2 d 2
2. (10 pts.) A function f(z,y) satisfies the equations of —— f, of - f . Calculate
Oz y dy  y?
= ).
d 2y _ygr. 4 (=) _0f of
@f(-’l%x )=Vf e (562) = O |y x 1+ 5|, _.. x (2z)

2x z2 2 2
:—?f+$—4(2x)f:<—5+;)f:0-

2
Remark: f(z,y) =e 7 /¥ is a function with these properties.

3. (18 pts.) A curve C in three-dimensional space is specified by the parametric equations

r=t, y=tsint, =z =cost.

(a) Find the tangent vector to C' at the point where t = 7.

T 1 1
Let 7(t) = <y> . Then 7'(t) = (sint—l—tcost) ,s0 7/(m) = <—7T> .
z —sint 0
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(b) Find the directional derivative of f(x,y,z) = x + ze¥ at that point, in the direction
of the curve.
The unit vector in the direction of the curve is #'(7) divided by its length:

1 T
1
b= ——| -7 |. Also, #(m)=1| 0 |.
V1+7T2<0> (—1)

So
Vf= (l,zey,ey)}F(ﬂ) =(1,-1,1).
Thus o7
_ .1+
A Y

4. (15 pts.) Producing a refrigerator requires 0.1 ton of steel and 0.2 ton of plastic. Producing
an airplane requires 5 tons of steel and 2 tons of plastic. Producing a ton of steel consumes
3 tons of coal and 10 barrels of water. Producing a ton of plastic consumes 2 tons of coal
and 50 barrels of water. Organize these facts into matrices, and find the matrix that tells
you how much coal (¢ ) and water (w ) is needed to make r refrigerators and a airplanes.

Let s and p be the quantities of steel and plastic, and let

()22 ()= 0z 2) () () =2C)= (o %) C):
Then (5]) — AB (2) . where
AB = (130 520) (8; Z) B (217 11590)‘

5. (10 pts.) Classify each of these integral operators as linear, affine, or fully nonlinear (as a
function of ¢g). (g is an element of C(0,1) — that is, a function.)

t
(a)  A(g) = / e(t_3>g(s) ds. (A(g) is another element of C(0,1) — a function of the
0
variable ¢. In other words, A:C(0,1) — C(0,1).)

Linear. This is clear from the form of the integrand; or, one can easily verify that

t t t
ANg+h) = / e \g(s) + h(s)] ds = A/ e = g(s)ds + / e~ n(s)ds = AA(g) + A(h).
0 0 0
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1
(b)  B(g) = / te9) gt | (B(g) is an element of R — a number. B:C(0,1) - R .)
0

Nonlinear. Again, this is pretty obvious because the g is up in the exponent. A formal counterex-
ample (to the homogeneity clause of the definition) is

1 1
B(\g) =/ te?9(®) dt;é/ txe?™ dt = AB(g).
0 0

( B is not affine, because it’s not of the form of a linear operator plus a fixed vector (which would be
a constant number in this case). An example of an affine operator C:C(0,1) — C(0,1) is C(g)(t) =
A(g)(t) + cost, A asin part (a).)

6. (10 pts.) Construct the best affine approximation (also known as the first-order approxi-

/2 2

mation) to T'(z,y) = ( v+ 4y ) in the neighborhood of the point (zg,yg) = (1,1).
r—=Y

The matrix of partial derivatives is

x 4y 1 4
JT = ( \/m2f>4y2 \/x2+4y2 ) , SO JT_"OT = ( \{g \/?) .

Therefore,
T — X \/5 14 r—1
~ = = \/g 5 .
y— 2= 17
7. (25 pts.) Find all solutions (z,y,z) of x— y—22=0, (A and B are arbitrary,

2¢4+3y+ Az = B.

but fixed, parameters. Certain special values of A and B will require special attention.)

0 1 -1 1\ _ /1 -1 =2 0
(1 1 -2 0>”i[>]<0 1 -1 1)
9 3 A B 9 3 A B

5113 o1 1 -1 -2 0 Bl—Bl-si21 /1 0 -3 1
311 ”(0 1 -1 1) e (0 1 -1 1 )
0 5 A+4 B 0 0 A+9 B-5

Case I: If A= —9 and B # 5, there are no solutions, because the bottom row gives an inconsistent
equation.
Case II: If A= -9 and B =05, then z is an arbitrary parameter and

y=z+1, r=3z+1.
Case III: If A # —9, continue reducing:

812131 /( At 1 0 -3 1 nj—m+3pE /1 0 0 1+4+3C
[]H[M“(o 1 -1 1 ) G (0 1 0 1+C>,

o0 1 55 o001 ¢C
B_
where we define C' = 159 to save writing. Therefore, in this case there is the unique solution

x=1+43C, y=1+C, z="C.



