Test C - Solutions

Name: \qquad

Calculators may be used for simple arithmetic operations only!

1. (24 pts.) Let $\vec{F}(\vec{r})=\left(e^{x}+y\right) \hat{\imath}+y^{3} \hat{\jmath}+\left(z^{2}-x\right) \hat{k}$.
(a) Calculate $\nabla \cdot \vec{F}$.

$$
e^{x}+3 y^{2}+2 z .
$$

(b) Calculate $\nabla \times \vec{F}$.

$$
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
e^{x}+y & y^{3} & z^{2}-x
\end{array}\right|=0 \hat{\imath}+(-1)(-\hat{\jmath})+(-1) \hat{k}=\hat{\jmath}-\hat{k} .
$$

(c) By the method of your choice, calculate $\oint \vec{F} \cdot d \vec{r}$ around the rectangular path from the origin, to $(1,0,1)$, to $(1,1,1)$, to $(0,1,0)$, and back to $(0,0,0)$. (This path lies in the plane where $z=x$ with y arbitrary.)
Method 1: Apply the Stokes theorem to the result of (b).

$$
\iint 0 d y d z+\iint 1 d z d x+\iint(-1) d x d y=0+0+\int_{0}^{1} d x \int_{0}^{1} d y(-1)=-1 .
$$

Variant of Method 1: The upward unit normal to the plane is $\hat{n}=\frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{k})$. Thus $\hat{n} \cdot \nabla \times \vec{F}=-\frac{1}{\sqrt{2}}$. Multiply by the area of the rectangle, $\sqrt{2}$, to get -1 .

Method 2: Note that y is constant on the first and third sides of the rectangle, while only y varies on the other two sides. So the line integral can be written out as

$$
\left(\int_{0}^{1}\left(e^{x}+0\right) d x+\int_{0}^{1}\left(z^{2}-z\right) d z\right)+\int_{0}^{1} y^{3} d y+\left(\int_{1}^{0}\left(e^{x}+1\right) d x+\int_{1}^{0}\left(z^{2}-z\right) d z\right)+\int_{1}^{0} y^{3} d y
$$

Almost everything cancels! We are left with

$$
-\int_{0}^{1} d x=-1
$$

2. (18 pts.) Find an orthonormal basis for the subspace of \mathbf{R}^{4} spanned by

$$
\begin{gathered}
\left\{\vec{v}_{1}=(2,0,0,0), \quad \vec{v}_{2}=(1,1,0,1), \quad \vec{v}_{3}=(-2,1,1,0)\right\} . \\
\hat{u}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=(1,0,0,0) . \\
v_{2 \|}=\left(\hat{u}_{1} \cdot \vec{v}_{2}\right) \hat{u}_{1}=\hat{u}_{1} . \\
v_{2 \perp}=\vec{v}_{2}-\hat{u}_{1}=(0,1,0,1) . \\
\hat{u}_{2}=\frac{\vec{v}_{2 \perp}}{\| \vec{v}_{2 \perp \|}}=\frac{1}{\sqrt{2}}(0,1,0,1) . \\
v_{3 \|}=\left(\hat{u}_{1} \cdot \vec{v}_{3}\right) \hat{u}_{1}+\left(\hat{u}_{2} \cdot \vec{v}_{3}\right) \hat{u}_{2}=-2 \hat{u}_{1}+\frac{1}{2}(1)(0,1,0,1)=\left(-2, \frac{1}{2}, 0, \frac{1}{2}\right) . \\
v_{3 \perp}=(-2,1,1,0)-\left(-2, \frac{1}{2}, 0, \frac{1}{2}\right)=\left(0, \frac{1}{2}, 1,-\frac{1}{2}\right) . \\
\left\|v_{3 \perp}\right\|^{2}=\frac{1}{4}+1+\frac{1}{4}=\frac{3}{2} . \\
\hat{u}_{3}=\sqrt{\frac{2}{3}} v_{3 \perp}=\frac{1}{\sqrt{6}}(0,1,2,-1) .
\end{gathered}
$$

3. (15 pts.) Let $\vec{A}(\vec{r})=x^{3} \hat{\imath}+y^{3} \hat{\jmath}+z^{3} \hat{k}$, and let S be the hemispherical surface $r=2$, $0 \leq \theta<\pi, 0 \leq \phi<\pi$ (i.e., the part of the sphere of radius 2 that lies in the $y>0$ half-space). Calculate $\iint_{S} \vec{A} \cdot d \vec{S}$ by the method of your choice.
Note first that $\nabla \cdot \vec{A}=3 x^{2}+3 y^{2}+3 z^{2}=3 r^{2}$. Since the divergence is a rather simple function, it would be nice to be able to use Gauss's theorem. We could close off the hemisphere by the $y=0$ plane. The flux through that plane is 0 (since $\hat{n}=\hat{\jmath}$ and $y^{3}=0$), so the integral we want is just the integral of $3 r^{2}$ over the half ball (solid hemisphere). [Alternative argument: By symmetry, the flux through the other hemispherical surface is equal to the the flux we want, so we can integrate $3 r^{2}$ over the entire ball and divide by 2.]

$$
\int_{0}^{2} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{\pi} d \phi 3 r^{2}=2 \pi \int_{0}^{2} 3 r^{4} d r=\left.\frac{6 \pi}{5} r^{5}\right|_{0} ^{2}=\frac{192 \pi}{5}
$$

Brief look at direct methods: One must resist the temptation to write $\vec{A}=r^{3} \hat{r} —$ that is false! In polar coordinates,

$$
\hat{n}=\hat{r}=\sin \theta \cos \phi \hat{\imath}+\sin \theta \sin \phi \hat{\jmath}+\cos \theta \hat{z} .
$$

So

$$
\vec{A} \cdot \hat{n}=r^{3} \sin ^{4} \theta \cos ^{4} \phi+r^{3} \sin ^{4} \theta \sin ^{4} \phi+r^{3} \cos ^{4} \theta, \quad d S=r^{2} \sin \theta d \theta d \phi, \quad r=2 .
$$

Thus the integral equals $I_{x}+I_{y}+I_{z}$, where

$$
\begin{gathered}
I_{x}=2^{5} \int_{0}^{\pi} d \phi \int_{0}^{\pi} d \theta \sin ^{5} \theta \cos ^{4} \phi, \quad I_{y}=2^{5} \int_{0}^{\pi} d \phi \int_{0}^{\pi} d \theta \sin ^{5} \theta \sin ^{4} \phi \\
I_{z}=2^{5} \int_{0}^{\pi} d \phi \int_{0}^{\pi} d \theta \cos ^{4} \theta \sin \theta
\end{gathered}
$$

(The parametric method of pp. 385-386 will lead to the same integrals.) These integrals are standard but a bit unpleasant, except for $I_{z}=64 \pi / 5$. The easiest way to do the other two is to note that by geometrical symmetry $I_{x}=I_{z}$ and by translational symmetry of the trig functions $I_{y}=I_{x}$. Thus all three are equal and we get the Gauss result again.
4. (28 pts.) Define a new coordinate system in a region of the $x-y$ plane by

$$
x=u+\frac{1}{3} v^{3}, \quad y=e^{v} .
$$

(a) Find the formulas for the tangent vectors to the coordinate curves.

$$
\frac{\partial \vec{r}}{\partial u}=\binom{1}{0}, \quad \frac{\partial \vec{r}}{\partial v}=\binom{v^{2}}{e^{v}} .
$$

For future reference, let's put these together into a Jacobian matrix,

$$
J=\left(\begin{array}{ll}
1 & v^{2} \\
0 & e^{v}
\end{array}\right)
$$

(b) Find the area of the region R bounded by the curves $u=0, u=3, v=-2$, and $v=1$.
We have

$$
\operatorname{det} J=e^{v},
$$

so the area is

$$
\int_{0}^{3} d u \int_{-2}^{1} e^{v} d v=3\left(e-e^{-2}\right)
$$

(c) Find the formulas (in terms of u and v) for the normal vectors to the coordinate curves.
We find

$$
J^{-1}=e^{-v}\left(\begin{array}{cc}
e^{v} & -v^{2} \\
0 & 1
\end{array}\right)
$$

The normal vectors are the rows of this matrix,

$$
\nabla u=\left(1,-v^{2} e^{-v}\right), \quad \nabla v=\left(0, e^{-v}\right)
$$

(d) Do ONE of these (10 pts. extra credit for both): [Continue on next page if necessary.] A. In the $x-y$ plane sketch the region R, the basis of tangent vectors at the point where $(u, v)=(0,1)$, and the basis of normal vectors at the point where $(u, v)=$ $(3,1)$. (Graphing calculators are allowed. Note that the curve $u=0$ has an inflection and vertical tangent at $(u, v)=(0,0)$.)

B. Discuss the "global" properties of this coordinate transformation: Does it cover the whole $x-y$ plane? What is the largest natural range of the variables (u, v) ? Is the mapping from (u, v) to (x, y) one-to-one? Does it have a smooth (differentiable) inverse?
Since $\operatorname{det} J$ is never 0 , the transformation has a smooth local inverse at every point. Since $y=e^{v}$ is always positive, the coordinate transformation is defined only in the upper half plane. However, as v ranges from $-\infty$ to $+\infty, y$ ranges from 0 to ∞ injectively. Furthermore, for a fixed v, u is uniquely determined by x and vice versa. Thus the natural range of (u, v) is all of \mathbf{R}^{2}, and the coordinate transformation maps this plane bijectively onto the upper half plane $-\infty<x<\infty$, $0<y<\infty$. (Thus the "local inverse" is actually a global inverse.)
5. (15 pts.) Calculate the determinant $\left|\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 1 & \pi & 2 & 3 & 4 \\ 4 & \pi^{2} & 3 & 2 & 2 \\ 1 & \pi^{3} & 1 & 1 & 1 \\ \pi & \pi^{4} & \pi & 2 \pi & \pi \sqrt{7}\end{array}\right|$.

Expand in minors of the top row, and extract a factor from the bottom row:

$$
(-\pi)\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 2 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & \sqrt{7}
\end{array}\right|
$$

Add the first row to the second row:

$$
(-\pi)\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 5 & 5 & 6 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & \sqrt{7}
\end{array}\right|
$$

Subtract 5 times the third row from the second row:

$$
(-\pi)\left|\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & \sqrt{7}
\end{array}\right|
$$

Expand in minors of the second row:

$$
(-\pi)\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right|=(+\pi)\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right|=\pi\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|=\pi
$$

