
Math. 311 (Fulling) 19 April 2002

Test C – Solutions

Name:

Calculators may be used for simple arithmetic operations only!

1. (24 pts.) Let ~F (~r) = (ex + y)ı̂ + y3̂ + (z2 − x)k̂ .

(a) Calculate ∇ · ~F .

ex + 3y2 + 2z.

(b) Calculate ∇× ~F .
∣∣∣∣∣

ı̂ ̂ k̂

∂x ∂y ∂z

ex + y y3 z2 − x

∣∣∣∣∣ = 0 ı̂ + (−1)(−̂) + (−1)k̂ = ̂− k̂.

(c) By the method of your choice, calculate
∮

~F · d~r around the rectangular path from
the origin, to (1, 0, 1) , to (1, 1, 1) , to ( 0, 1, 0) , and back to (0, 0, 0) . (This path lies
in the plane where z = x with y arbitrary.)

Method 1: Apply the Stokes theorem to the result of (b).

∫∫
0 dy dz +

∫∫
1 dz dx +

∫∫
(−1)dxdy = 0 + 0 +

∫ 1

0

dx

∫ 1

0

dy(−1) = −1.

Variant of Method 1: The upward unit normal to the plane is n̂ = 1√
2
(−ı̂+k̂) . Thus n̂·∇×~F = − 1√

2
.

Multiply by the area of the rectangle,
√

2 , to get −1 .

Method 2: Note that y is constant on the first and third sides of the rectangle, while only y varies
on the other two sides. So the line integral can be written out as

(∫ 1

0

(ex + 0) dx +

∫ 1

0

(z2 − z) dz

)
+

∫ 1

0

y3 dy +

(∫ 0

1

(ex + 1) dx +

∫ 0

1

(z2 − z) dz

)
+

∫ 0

1

y3 dy.

Almost everything cancels! We are left with

−
∫ 1

0

dx = −1.
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2. (18 pts.) Find an orthonormal basis for the subspace of R4 spanned by

{~v1 = (2, 0, 0, 0), ~v2 = (1, 1, 0, 1), ~v3 = (−2, 1, 1, 0)}.

û1 =
~v1

‖~v1‖ = (1, 0, 0, 0).

v2‖ = (û1 · ~v2)û1 = û1 .

v2⊥ = ~v2 − û1 = (0, 1, 0, 1).

û2 =
~v2⊥
‖~v2⊥‖

=
1√
2
(0, 1, 0, 1).

v3‖ = (û1 · ~v3)û1 + (û2 · ~v3)û2 = −2û1 + 1
2 (1)(0, 1, 0, 1) = (−2, 1

2 , 0, 1
2 ).

v3⊥ = (−2, 1, 1, 0)− (−2, 1
2 , 0, 1

2 ) = (0, 1
2 , 1,− 1

2 ).

‖v3⊥‖2 = 1
4 + 1 + 1

4 = 3
2 .

û3 =

√
2
3 v3⊥ =

1√
6
(0, 1, 2,−1).

3. (15 pts.) Let ~A(~r) = x3 ı̂ + y3̂ + z3k̂ , and let S be the hemispherical surface r = 2 ,
0 ≤ θ < π , 0 ≤ φ < π (i.e., the part of the sphere of radius 2 that lies in the y > 0
half-space). Calculate

∫∫
S

~A · d~S by the method of your choice.

Note first that ∇ · ~A = 3x2 + 3y2 + 3z2 = 3r2 . Since the divergence is a rather simple function, it
would be nice to be able to use Gauss’s theorem. We could close off the hemisphere by the y = 0
plane. The flux through that plane is 0 (since n̂ = ̂ and y3 = 0 ), so the integral we want is just

the integral of 3r2 over the half ball (solid hemisphere). [Alternative argument: By symmetry, the
flux through the other hemispherical surface is equal to the the flux we want, so we can integrate
3r2 over the entire ball and divide by 2 .]∫ 2

0

r2 dr

∫ π

0

sin θ dθ

∫ π

0

dφ 3r2 = 2π

∫ 2

0

3r4 dr =
6π

5
r5

∣∣∣2
0

=
192π

5
.

Brief look at direct methods: One must resist the temptation to write ~A = r3r̂ — that is false!
In polar coordinates,

n̂ = r̂ = sin θ cos φ ı̂ + sin θ sin φ ̂ + cos θ ẑ.

So
~A · n̂ = r3 sin4 θ cos4 φ + r3 sin4 θ sin4 φ + r3 cos4 θ, dS = r2 sin θ dθ dφ, r = 2.

Thus the integral equals Ix + Iy + Iz , where

Ix = 25

∫ π

0

dφ

∫ π

0

dθ sin5 θ cos4 φ, Iy = 25

∫ π

0

dφ

∫ π

0

dθ sin5 θ sin4 φ,

Iz = 25

∫ π

0

dφ

∫ π

0

dθ cos4 θ sin θ.

(The parametric method of pp. 385–386 will lead to the same integrals.) These integrals are standard
but a bit unpleasant, except for Iz = 64π/5 . The easiest way to do the other two is to note that by
geometrical symmetry Ix = Iz and by translational symmetry of the trig functions Iy = Ix . Thus
all three are equal and we get the Gauss result again.
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4. (28 pts.) Define a new coordinate system in a region of the x–y plane by

x = u + 1
3v3, y = ev.

(a) Find the formulas for the tangent vectors to the coordinate curves.
∂~r

∂u
=

(
1

0

)
,

∂~r

∂v
=

(
v2

ev

)
.

For future reference, let’s put these together into a Jacobian matrix,

J =

(
1 v2

0 ev

)
.

(b) Find the area of the region R bounded by the curves u = 0 , u = 3 , v = −2 , and
v = 1 .

We have
detJ = ev,

so the area is ∫ 3

0

du

∫ 1

−2

ev dv = 3(e− e−2) .

(c) Find the formulas (in terms of u and v ) for the normal vectors to the coordinate
curves.

We find

J−1 = e−v

(
ev −v2

0 1

)
.

The normal vectors are the rows of this matrix,

∇u = (1,−v2e−v), ∇v = (0, e−v).

(d) Do ONE of these (10 pts. extra credit for both): [Continue on next page if necessary.]

A. In the x–y plane sketch the region R , the basis of tangent vectors at the point
where (u, v) = (0, 1) , and the basis of normal vectors at the point where (u, v) =
(3, 1) . (Graphing calculators are allowed. Note that the curve u = 0 has an
inflection and vertical tangent at (u, v) = (0, 0) .)
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∂u



311C-S02 Page 4

B. Discuss the “global” properties of this coordinate transformation: Does it cover the
whole x–y plane? What is the largest natural range of the variables (u, v) ? Is the
mapping from (u, v) to (x, y) one-to-one? Does it have a smooth (differentiable)
inverse?

Since det J is never 0 , the transformation has a smooth local inverse at every point. Since y = ev

is always positive, the coordinate transformation is defined only in the upper half plane. However,
as v ranges from −∞ to +∞ , y ranges from 0 to ∞ injectively. Furthermore, for a fixed v ,
u is uniquely determined by x and vice versa. Thus the natural range of (u, v) is all of R2 , and
the coordinate transformation maps this plane bijectively onto the upper half plane −∞ < x < ∞ ,
0 < y < ∞ . (Thus the “local inverse” is actually a global inverse.)

5. (15 pts.) Calculate the determinant

∣∣∣∣∣∣∣∣∣

0 1 0 0 0
1 π 2 3 4
4 π2 3 2 2
1 π3 1 1 1
π π4 π 2π π

√
7

∣∣∣∣∣∣∣∣∣
.

Expand in minors of the top row, and extract a factor from the bottom row:

(−π)

∣∣∣∣∣∣∣

1 2 3 4

4 3 2 2

1 1 1 1

1 1 2
√

7

∣∣∣∣∣∣∣
.

Add the first row to the second row:

(−π)

∣∣∣∣∣∣∣

1 2 3 4

5 5 5 6

1 1 1 1

1 1 2
√

7

∣∣∣∣∣∣∣
.

Subtract 5 times the third row from the second row:

(−π)

∣∣∣∣∣∣∣

1 2 3 4

0 0 0 1

1 1 1 1

1 1 2
√

7

∣∣∣∣∣∣∣
.

Expand in minors of the second row:

(−π)

∣∣∣∣∣
1 2 3

1 1 1

1 1 2

∣∣∣∣∣ = (+π)

∣∣∣∣∣
1 1 1

1 2 3

0 0 1

∣∣∣∣∣ = π

∣∣∣∣ 1 1

1 2

∣∣∣∣ = π.


