
Hyperbolic Functions and the Twin Paradox

Basics of hyperbolic functions

The basic hyperbolic functions are defined as

coshx ≡ 1
2
(ex + e−x), sinh ≡ 1

2
(ex − e−x).

The notation ch, sh is also used (especially in European books).
Their main usefulness is that every solution of

d2y

dx2
= k2y

can be written
y(x) = C cosh(kx) + D sinh(kx),

and the constants are neatly related to the initial data:

C = y(0), D =
y′(0)

k
.

The hyperbolic functions satisfy a long list of identities closely parallel
to well known identities for trigonometric functions. Some of these are:

d

dx
sinh x = coshx,

d

dx
coshx = sinh x,

cosh2 x− sinh2 x = 1,

cosh(−x) = cosh x, sinh(−x) = − sinh x,

sinh(x + y) = sinh x cosh y + coshx sinh y,

cosh(x + y) = coshx cosh y + sinh x sinh y,

sinh x = x +
x3

6
+ · · · , coshx = 1 +

x2

2
+ · · ·
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(that is, the power series for sin and cos with all the minus signs removed).
All of these identities are easily derived or checked from the definitions and
the elementary properties of the exponential function.

On the other hand, the qualitative behavior of these functions is very
different from the trig functions: coshx ≥ 1 while sinh x takes on all values
from −∞ to ∞. They are decidedly not periodic. As x → ±∞, one or the
other of the exponential terms dominates, so the hyperbolic function grows
like 1

2e|x|. The function

tanh x =
ex − e−x

ex + e−x

approaches ±1 as x → ±∞, and its graph resembles that of the inverse
tangent function.

[With luck, graphs will be inserted here someday.]

Why are they called hyperbolic?

Hyperbolic functions have the same relation to a right-angled hyperbola
as trigonometric functions have to a circle. (In fact, trig functions are
sometimes called “circular functions”.)

[Again, printed versions of the graphs must wait.]
First, recall the basic diagram re-

lating the trig functions to a right tri-
angle (with side lengths cos u, sinu,
and 1) and the corresponding sector
of a circle. Here u has three different
geometrical interpretations:

1. the angle POQ opposite sin u
and adjacent to cosu.

2. the length of the arc AP opposite
that angle.

3. twice the area of the sector AOP bounded by that arc and the line
segments OA and OP .

The equation of the circle is x2+y2 = 1 (reflecting the trig identity cos2 u+
sin2 u = 1), and the circle is traced out parametrically as 0 ≤ u < 2π.
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Now consider the right-hand
branch of the hyperbola with equa-
tion x2 − y2 = 1, which will re-
flect the hyperbolic identity cosh2 u−
sinh2 u = 1. In fact, that branch
will be traced out parametrically as
−∞ < u < ∞. Here u is not
an angle (at least, not in the usual
sense). However, there are close par-
allels to the second and third state-
ments about the circle.

First, it can be shown that u
equals twice the area of the “shark’s
fin” bounded by OP , OA, and the arc
AP .

Proper time

Second, although u is not the length of the arc AP , there is a way in
which it is analogous to an arc length. Recall that ordinary arc length is
defined by the schematic formula

ds =
√

dx2 + dy2

— which means that for any parametrized curve x = x(u), y = y(u), the
length of a segment is

s =
∫ u2

u1

√(
dx

du

)2

+
(

dy

du

)2

du.

Thus for the circle we have

arcAP =
∫ u

0

√
sin2 ũ + cos2 ũ dũ = u,

which was assertion 2 about the circle. In the hyperbolic case the corre-
sponding integral for arcAP is not equal to u. However, if we define a new
quantity by

dσ =
√
|dy2 − dx2|,
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σ =
∫ u2

u1

√√√√∣∣∣∣∣
(

du

dy

)2

−
(

dx

du

)2
∣∣∣∣∣ du,

then for the hyperbola the σ of the curve segment AP is

σ =
∫ u

0

√
cosh2 ũ− sinh2 ũ dũ =

∫ u

0

dũ = u.

This definition actually has a physical application. Let y stand for
time, and consider motion in a straight line, so we can ignore two of the
three space coordinates. Then a curve on our diagram is a graph of the
position, x, of an object as a function of time — provided that the curve
crosses each horizontal line only once. (It may seem strange that we are
marking the independent variable of the function on the vertical axis, but
that is the tradition in relativistic physics.) Furthermore, the slope of the
curve must be greater than 1 to enforce the condition that the object moves
more slowly than light (which has speed 1 in our units). Now, the basic
physical law involving σ is

The time measured by any (accurate) clock whose motion is de-
scribed by such a curve is the parameter σ of that curve.

Therefore, σ is called proper time.

The twin “paradox”

A famous prediction of Einstein’s theory of special relativity: Consider
two twins. One stays at home. The other takes a trip on a fast rocket ship
and returns home. Then he will be younger than his sibling who stayed at
home.

Let the moving twin’s round trip
be described by the hyperbolic seg-
ment P ′AP , the stationary twin’s
(trivial) trip by line segment P ′QP .
The equation of that line is x = cosh u
(a constant function of y). We know
that the proper time σ of P ′AP equals
2u, since we calculated the contribu-
tion of the top half to be u. What is
the proper time of P ′QP ?
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σ =
∫ √

|dy2 − dx2| =
∫ y

−y

√
1−

(
dx

dỹ

)2

dỹ

=
∫ y

−y

dỹ = 2y = 2 sinh u.

That is,

age of stationary twin = 2 sinh u > 2u = age of moving twin.

There is nothing paradoxical about this result, because the two twins
are not equivalent. One is accelerated (moving on a curved path in space-
time), while the other is moving at a constant speed (moving on a straight
path in space-time). (In the natural coordinate system for the problem,
that speed is 0 and the straight path is vertical, but those features are
irrelevant to the main point.) The conclusion should be no more surprising
than the fact that the arc length of a semicircle is larger than the diameter
(πr > 2r).
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