
Math. 412 9 December 2005

Final Examination – Solutions

Calculators may be used for simple arithmetic operations only!

Some possibly useful information

Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

Laplacian operator in spherical coordinates (“physicists’ notation”):

∇2u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂φ2
.

Spherical harmonics satisfy[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ).

Bessel’s equation:

∂2Z

∂z2
+

1
z

∂Z

∂z
+

(
1− n2

z2

)
Z = 0 has solutions Jn(z) and Yn(z).

∂2Z

∂z2
+

2
z

∂Z

∂z
+
(

1− l(l + 1)
z2

)
Z = 0 has solutions jl(z) and yl(z).

Legendre’s equation:

1
sin θ

d

dθ

(
sin θ

dΘ
dθ

)
+ l(l + 1)Θ = 0 has a nice solution Pl(cos θ).

Famous Green function integrals:

1
2π

∫ ∞

−∞
eikx e−k2t dk =

1√
4πt

e−x2/4t,
1
2π

∫ ∞

−∞
eikx e−|k|y dk =

1
π

y

x2 + y2
.

Hyperbolic function identities:

sinh(A±B) = sinh A cosh B±coshA sinh B, cosh(A±B) = cosh A cosh B±sinhA sinh B.
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1. (30 pts.) Classify each equation as
(i) elliptic, hyperbolic, or parabolic,

and
(ii) linear homogeneous, linear nonhomogeneous, or nonlinear.

(a)
∂u

∂t
=

∂2u

∂x2

Parabolic; linear homogeneous.

(b)
∂2u

∂x2
+

∂2u

∂y2
= 2e2u

Elliptic; nonlinear.

(c)
∂2u

∂t2
− c2

∂2u

∂x2
+ 2c

∂u

∂t
+

∂u

∂x
= 0

Hyperbolic; linear homogeneous.

2. (35 pts.) Solve Laplace’s equation in a disk,

∇2u = 0 for 0 ≤ r < R, u(R, θ) = f(θ).

Since this problem is done in detail in my notes and in every textbook on the subject, I will be brief
here. The general solution inside the disk is

u(r, θ) =

∞∑
n=−∞

cnr|n|einθ.

Then the boundary condition is

f(θ) =

∞∑
n=−∞

cnR|n|einθ,

whence

cn = R−|n| 1

2π

∫ 2π

0

e−inθf(θ) dθ.

3. (35 pts.)

(a) Construct a Green function to solve the nonhomogeneous ODE problem

∂2u

∂x2
− κ2u = f(x) (0 < x < 1), u′(0) = 0, u′(1) = 0,

for κ > 0.
The Green function should satisfy

∂2G

∂x2
− κ2G = δ(x− y),

∂G

∂x
(0, y) = 0 =

∂G

∂x
(1, y).
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We must have

G(x, y) =

{
a(y)eκx + b(y)e−κx for x < y,

c(y)eκx + d(y)e−κx for x > y.

The two boundary conditions imply

a(y)− b(y) = 0, c(y)eκ − d(y)e−κ = 0,

whence (as you might have had foresight to see from the start)

G(x, y) =

{
A(y) cosh(κx) for x < y,

B(y) cosh(κ(x− 1)) for x > y.

[Details: d(y) = c(y)e2κ ⇒ c(y)eκx + d(y)e−κx = c(y)[eκx + e2κe−κx] = c(y)eκ cosh(κx− κ), so let
B(y) = c(y)eκ.] Now impose the continuity and jump conditions at x = y:

A(y) cosh(κy) = B(y) cosh(κ(y − 1)),

∂G

∂x
(y + ε)− ∂G

∂x
(y − ε) = 1 ⇒ B(y) sinh(κ(y − 1))−A(y) sinh(κy) =

1

κ
.

Let’s rewrite them neatly:

A(y) cosh(κy)−B(y) cosh(κ(y − 1)) = 0,

−A(y) sinh(κy) + B(y) sinh(κ(y − 1)) =
1

κ
.

The determinant of this system is

∆ =

∣∣∣∣ cosh(κy) − cosh(κ(y − 1))

− sinh(κy) sinh(κ(y − 1))

∣∣∣∣ = cosh(κy) sinh(κ(y − 1))− sinh(κy) cosh(κ(y − 1)) = − sinhκ.

Thus

A(y) =
−1

sinh κ

∣∣∣∣ cosh(κy) 0

κ−1 sinh(κ(y − 1))

∣∣∣∣ =
− cosh(κ(y − 1))

κ sinhκ
,

B(y) =
−1

sinh κ

∣∣∣∣ 0 − cosh(κ(y1−))

− sinh(κ(y − 1)) κ−1

∣∣∣∣ = − cosh(κy)

κ sinh κ
.

Therefore,

G(x, y) =

{
− cosh(κx) cosh(κ(y−1))

κ sinhκ for x < y,

− cosh(κy) cosh(κ(x−1))
κ sinhκ for x > y.

(b) Explain why there is no Green function in the case κ = 0. Hint: Qu. 5, Answer (B)
arises in an analogous situation.

When κ = 0 any constant function is a solution of the homogeneous problem,

∂2u

∂x2
− κ2u = 0, u′(0) = 0, u′(1) = 0.

Therefore, the solution of the nonhomogeneous problem is not unique. In fact, a solution will not

even exist unless
∫ 1

0
f(x) dx = 0. Therefore, no formula of the Green type can apply to that problem.
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4. (35 pts.) Solve the heat equation in a ball,

∂u

∂t
= ∇2u for 0 ≤ r < 1, u(t, 1, θ, φ) = 0, u(0, r, θ, φ) = 1− r).

(As usual, you may skip well-known steps if you know where you’re heading and can
explain what you’re doing.)

Separate variables as u = Uω(r, θ, φ)e−ω2t, arriving at −ω2Uω = ∇2Uω , the Laplacian in spherical
coordinates being given on the first page of the test.

The quickest way to proceed is to notice that since the data function in this problem is independent
of the angles, the relevant eigenfunctions will be, too; therefore, we can discard all the angular
derivatives and get

1

r2

d

dr

(
r2 dU

dr

)
= −ω2U.

Let z = ωr; then
d2U

dz2
+

2

z

dU

dz
+ U = 0,

which is the spherical Bessel equation with l = 0. The solution that is regular at the origin is j0(z).
We need the eigenfunction to vanish when R = 1, so the allowed values of ω are the zeros of j0(z).
So the solution of the main problem has the form

u(t, r, θ, φ) =

∞∑
j=1

Cj j0(ωjr)e
−ωj

2t.

A more systematic way of getting to this point is to write the general solution

u(t, r, θ, φ) =

∞∑
l=0

l∑
m=−l

∞∑
j=1

ClmjY
m
l (θ, φ)jl(ωljr)e

−ωj
2t

and later observe that all the spherical harmonics except Y 0
0 (a constant function) are orthogonal to

the initial data.
Finally, we should find formulas for the Cj . Recall that the spherical Bessel functions solve a

Sturm–Liouville problem with weight function r2. So

Cj =

∫ 1

0
j0(ωjr)(1− r)r2 dr∫ 1

0
j0(ωjr)2r2 dr

.

Although it may be possible to evaluate these integrals, we won’t try.

5. (30 pts.) This is a group of multiple-choice questions, concerning the equation ∇2u = 0
in various regions of the x-y plane with various boundary conditions. For each part of the
problem, select from the following list the form that you expect the solution to have. You
should be able to answer these questions from a knowledge of general principles and a few
moments’ thought, without calculations. It might help to work from the answers to the
questions.

Please note that answers are labeled by capital letters, and questions by lower case letters.
Please list your responses in alphabetical order of the questions: something like “a — B,
b — G, [etc]”. (One answer is not used. No answer is correct to more than one question.)
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Here are the questions. The large dot in each figure indicates the origin of coordinates.
Whenever a region has a side of finite length, that length is L. An open end indicates the
region extends to infinity. An arrow across the boundary indicates a normal-derivative
(a.k.a. Neumann or flux) boundary condition; otherwise the boundary data apply to u
itself (Dirichlet condition). “f” represents arbitrary inhomogeneous data.

(a)

•

f

0

0

(d)

•

f1

f2

0←− −→ 0

(b)

•
f ←−

0

0

(e)

•

0

0

0 0

(c)

•

f

0

(f)

•

0x
0
y0←− −→ 0

And here are the allowed answers:
(A) u(x, y) = 0 (B) u(x, y) = C (a nonzero constant)

(C) u(x, y) =
∫ ∞
0

dω B(ω) sin(ωx) sinh(ωy)

(D) u(x, y) =
∞∑

n=1

sin
nπy

L

[
An sinh

nπx

L
+ Bn sinh

nπ(L− x)
L

]

(E) u(x, y) =
∞∑

n=1

Cn sin
nπy

L
e−nπx/L (F) u(x, y) =

∫ ∞

−∞
dω A(ω) eiωx sinh(ωy)

(G) u(x, y) =
∞∑

n=0

cos
nπx

L

[
An sinh

nπy

L
+ Bn sinh

nπ(L− y)
L

]
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And here are the actual answers: a — C
b — E
c — F
d — G
e — A
f — B
unused — D

6. (35 pts.) By the method of your choice, solve the wave equation on the half-line,

∂2u

∂t2
=

∂2u

∂x2
for −∞ < t <∞, 0 < x <∞,

with conditions
∂u

∂x
(t, 0) = 0, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x).

(Require the solution to be bounded.)
Fourier’s method: By separation of variables or an immediate Fourier cosine transform, the solution
has the form

u(t, x) =

∫ ∞

0

dk A(k) cos(kx) cos(kt) +

∫ ∞

0

dk B(k) cos(kx) sin(kt).

From the initial data,

f(x) =

∫ ∞

0

dk A(k) cos(kx), g(x) =

∫ ∞

0

dk B(k) cos(kx)k.

So

A(k) =
2

π

∫ ∞

0

dx f(x) cos(kx), B(k) =
2

πk

∫ ∞

0

dx g(x) cos(kx).

D’Alembert’s method: Define f and g for negative x to be the even extensions of the functions
given for positive x. Define G(x) =

∫ x

0
g(u) du. Then

u(t, x) = 1
2 [f(x + t) + f(x− t) + G(x + t)−G(x− t)]

=
1

2

[
f(x + t) + f(x− t) +

∫ x+t

x−t

g(u) du

]
.

Extra Credit Problems (30 points each)

7. Solve the wave problem (Qu. 6) by a distinctly different method.
[See above.]
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8. Construct a Green function implementing the solution of the disk problem (Qu. 2). (The
answer is known as “Poisson’s formula”.)

u(r, θ) =

∞∑
n=−∞

r|n|einθR−|n| 1

2π

∫ π

0

e−inφf(φ) dφ =

∫ 2π

0

dφ f(φ)G(θ, φ)

where

G(θ, φ) =
1

2π

∞∑
n=−∞

(
r

R

)|n|
ein(θ−φ)

=
1

2π

[
1 +

∞∑
n=1

(
r

R

)n

(ein(θ−φ) + e−in(θ−φ))

]

=
1

2π

[
1 +

r
Rei(θ−φ)

1− r
Rei(θ−φ)

+
r
Re−i(θ−φ)

1− r
Re−i(θ−φ)

]

=
1

2π

[
1 +

r
R ei(θ−φ) −

(
r
R

)2
+ r

Re−i(θ−φ) −
(

r
R

)2
1− 2r

R cos(θ − φ) +
(

r
R

)2
]

=
1

2π

[
1 +

2r
R cos(θ − φ)− 2

(
r
R

)2
1− 2r

R cos(θ − φ) +
(

r
R

)2
]

=
1

2π

1−
(

r
R

)2
1− 2r

R cos(θ − φ) +
(

r
R

)2
=

1

2π

R2 − r2

R2 − 2rR cos(θ − φ) + r2
.


