Test A - Solutions

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Classify each equation as linear homogeneous, linear nonhomogeneous, or nonlinear.
(a) $\frac{\partial^{2} u}{\partial t^{2}}+\left(\frac{\partial u}{\partial x}\right)^{2}=x^{2} \cos (2 x)$
nonlinear
(b) $\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+16 u=0$
linear homogeneous
(c) $\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2} u}{\partial x^{2}}-x(1-x)=0$
linear nonhomogeneous
2. (35 pts.) Let $f(x)=x$ for $-\pi \leq x<\pi$.
(a) Find the ("full") Fourier series for f (with $[-\pi, \pi]$ as the basic interval).

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} .
$$

If $n \neq 0$,

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n x} x d x \\
& =\frac{1}{2 \pi} \frac{1}{-i n}\left[\left.e^{-i n x} x\right|_{-\pi} ^{\pi}-\int_{-\pi}^{\pi} e^{-i n x} d x\right] \\
& =\frac{i}{2 \pi n}\left(\pi e^{-i n \pi}+\pi e^{i n \pi}-0\right) \\
& =\frac{1}{2 \pi n} 2 \pi \cos (n \pi)=\frac{i(-1)^{n}}{n} .
\end{aligned}
$$

If $n=0$,

$$
c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x d x=0 .
$$

Thus

$$
f(x)=\sum_{0 \neq n=-\infty}^{\infty} \frac{i(-1)^{n}}{n} e^{i n x} .
$$

This can also be written

$$
\sum_{n=1}^{\infty} \frac{2(-1)^{n-1}}{n} \sin (n x) .
$$

(b) Over the interval $[-10,10]$, sketch the function to which the series converges.

(c) Sketch a typical partial sum of the series (say the one with $|n| \leq 8$). The sketch is not expected to be precise, just qualitative.

(d) Does the series converge
(i) uniformly?

No. The periodic extension is discontinuous at $x=N \pi$ (N odd).
(ii) pointwise?

Yes. The periodic extension is piecewise smooth.
(iii) in the mean?

Yes. The function is bounded and therefore obviously square-integrable over the finite interval. Alternatively, since $\left|c_{n}\right|^{2} \propto n^{-2}$, the Parseval sum converges.
3. (40 pts.) Consider the wave equation on an interval,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\pi, \quad-\infty<t<\infty)
$$

with boundary conditions

$$
u(0, t)=0=u(\pi, t)
$$

and initial conditions

$$
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=0
$$

(a) Describe in words and sketches (and possibly a few equations) what the solution is like, assuming that $f(x)$ is a sharply peaked function such as $f(x)=e^{-10(x-1)^{2}}$.
The pulse will split into two halves, which move to left and right without changing shape. When a pulse hits an end of the interval, it reflects upside down. (For sketches see the similar problem in the Test A Solutions for Fall 2000. In that case the boundary condition was different, so the pulses did not invert upon reflection.) The d'Alembert formula for the solution is

$$
u(x, t)=\frac{1}{2}[f(x-t)+f(x+t)],
$$

where f is the odd periodic extension of the original f.
(b) Now assume instead that $f(x)=\sin x-\frac{1}{9} \sin (3 x)$ (which is not very sharply peaked). Find a formula for $u(x, t)$ as a finite Fourier series. (There are several ways to do this, some quicker than others. Think before you launch a massive calculation.)
Method 1: Since f is already odd and 2π-periodic, we can use the d'Alembert formula immediately:

$$
u(x, t)=\frac{1}{2}[\sin (x-t)+\sin (x+t)]-\frac{1}{18}[\sin (3(x-t))+\sin (3(x+t))] .
$$

Now use trig identities to rearrange this into the Fourier form,

$$
u(x, t)=\sin x \cos t-\frac{1}{9} \sin (3 x) \cos (3 t) .
$$

Method 2: Each term in f has the form appropriate to a normal mode for the wave equation on $[0, \pi]$ with Dirichlet boundary conditions, $\sin (n x)[a \cos (n t) v+b \sin (n t)]$. Since the initial time derivative is zero, the cosine terms don't appear. Thus

$$
u(x, t)=\sin x \cos t-\frac{1}{9} \sin (3 x) \cos (3 t) .
$$

Method 3: Go through the whole process of separation of variables. (But I hope you didn't.)
4. (35 pts.) Solve Laplace's equation in a square,

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<L, \quad 0<y<L
$$

with the boundary conditions

$$
u(0, y)=T, \quad u(L, y)=0, \quad \frac{\partial u}{\partial y}(x, 0)=0, \quad \frac{\partial u}{\partial y}(x, L)=f(x)
$$

Note that $f(x)$ is an arbitrary function and T is a (nonzero) constant.
There are two nonhomogeneous conditions (affecting different variables), so we should construct the solution as a sum of two terms.

Best method: Since T does not depend on y, we can find a solution of the PDE and the x-boundary conditions that is independent of y. (This is like a steady-state solution, although y is not a time coordinate.) We have

$$
V^{\prime \prime}(x)=0, \quad V(0)=T, \quad V(L)=0,
$$

hence

$$
V(x)=A x+B, \quad B=T, \quad A L+B=0,
$$

so

$$
V(x)=\frac{T}{L}(L-x) .
$$

Now let $w=u-V$. It must satisfy

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0, \quad w(0, y)=0, \quad w(L, y)=0, \quad \frac{\partial w}{\partial y}(x, 0)=0, \quad \frac{\partial w}{\partial y}(x, L)=f(x)
$$

(We don't need to subtract V from f, because f is the y derivative in this problem.) Standard separation of variables, $w_{\text {sep }}(x, y)=X(x) Y(y)$, leads to

$$
X^{\prime \prime}(x)+k^{2} X(x)=0, \quad X(0)=0=X(L), \quad Y^{\prime \prime}(y)-k^{2} Y(y)=0, \quad Y^{\prime}(0)=0 .
$$

As usual,

$$
k=k_{n} \equiv \frac{n \pi}{L}, \quad X_{n}(x)=\sin \left(k_{n} x\right)
$$

We can take $Y_{n}(y)=\cosh \left(k_{n} y\right)$.
Superposing, we get the general solution

$$
u(x, t)=\sum_{n=0}^{\infty} b_{n} \sin \left(k_{n} x\right) \cosh \left(k_{n} y\right) .
$$

This is required to satisfy the remaining boundary condition,

$$
f(x)=\sum_{n=1}^{\infty} b_{n} k_{n} \sin \left(k_{n} x\right) \sinh \left(k_{n} y\right)
$$

Therefore,

$$
b_{n} k_{n} \sinh \left(k_{n} y\right)=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(k_{n} x\right) d x
$$

determines b_{n}. Finally, $u(x, t)=V(x)+w(x, t)$.
Alternative method: Write $u(x, t)=v(x, t)+w(x, t)$, where

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, \quad v(0, y)=T, \quad v(L, y)=0, \quad \frac{\partial v}{\partial y}(x, 0)=0, \quad \frac{\partial v}{\partial y}(x, L)=0
$$

and w satisfies the complementary equations, which turn out to be the same as in the other method. Separation of variables in the v problem yields

$$
X^{\prime \prime}(x)-k^{2} X(x)=0, \quad X(L)=0, \quad Y^{\prime \prime}(y)+k^{2} Y(y)=0, \quad Y^{\prime}(0)=0=Y^{\prime}(L)
$$

Thus

$$
k=k_{n} \equiv \frac{n \pi}{L}, \quad Y_{n}(y)=\cos \left(k_{n} y\right), \quad X_{n}(x) \propto \begin{cases}\sinh \left[k_{n}(L-x)\right] & \text { if } n \neq 0 \\ L-x & \text { if } n=0\end{cases}
$$

The superposition is

$$
v(x, y)=a_{0}(L-x)+\sum_{n=1}^{\infty} a_{n} \cos \left(k_{n} y\right) \sinh \left[k_{n}(L-x)\right] .
$$

It must satisfy

$$
T=a_{0} L+\sum_{n=1}^{\infty} a_{n} \cos \left(k_{n} y\right) \sinh \left(k_{n} L\right) .
$$

Thus if $n \neq 0$

$$
a_{n} \sinh \left(k_{n} L\right)=\frac{2}{L} \int_{0}^{L} T \cos \left(k_{n} y\right) d y=0 .
$$

For $n=0$ we have

$$
a_{0} L=\frac{1}{L} \int_{0}^{L} T d y=T
$$

so

$$
v(x, y)=\frac{T}{L}(L-x) .
$$

