
Math. 412 (Fulling) 29 September 2005

Test A – Solutions

Calculators may be used for simple arithmetic operations only!

1. (15 pts.) Classify each equation as linear homogeneous, linear nonhomogeneous, or non-
linear.

(a)
∂2u

∂t2
+

(
∂u

∂x

)2

= x2 cos(2x)

nonlinear

(b)
∂2u

∂t2
− ∂2u

∂x2
+ 16u = 0

linear homogeneous

(c)
∂2u

∂t2
+

∂2u

∂x2
− x(1− x) = 0

linear nonhomogeneous

2. (35 pts.) Let f(x) = x for −π ≤ x < π .
(a) Find the (“full”) Fourier series for f (with [−π, π] as the basic interval).

f(x) =

∞∑
n=−∞

cneinx.

If n 6= 0 ,

cn =
1

2π

∫ π

−π

e−inxxdx

=
1

2π

1

−in

[
e−inxx

∣∣∣π
−π

−
∫ π

−π

e−inx dx

]

=
i

2πn
(πe−inπ + πeinπ − 0)

=
1

2πn
2π cos(nπ) =

i(−1)n

n
.

If n = 0 ,

c0 =
1

2π

∫ π

−π

x dx = 0.

Thus

f(x) =

∞∑
0 6=n=−∞

i(−1)n

n
einx.

This can also be written ∞∑
n=1

2(−1)n−1

n
sin(nx).
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(b) Over the interval [−10, 10] , sketch the function to which the series converges.
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(c) Sketch a typical partial sum of the series (say the one with |n| ≤ 8 ). The sketch is
not expected to be precise, just qualitative.

-10 -5 5 10

-3
-2
-1

1
2
3

(d) Does the series converge
(i) uniformly?

No. The periodic extension is discontinuous at x = Nπ ( N odd).

(ii) pointwise?
Yes. The periodic extension is piecewise smooth.

(iii) in the mean?
Yes. The function is bounded and therefore obviously square-integrable over the finite interval.
Alternatively, since |cn|2 ∝ n−2 , the Parseval sum converges.

3. (40 pts.) Consider the wave equation on an interval,

∂2u

∂t2
=

∂2u

∂x2
(0 < x < π, −∞ < t < ∞),

with boundary conditions
u(0, t) = 0 = u(π, t)

and initial conditions
u(x, 0) = f(x),

∂u

∂t
(x, 0) = 0.
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(a) Describe in words and sketches (and possibly a few equations) what the solution is

like, assuming that f(x) is a sharply peaked function such as f(x) = e−10(x−1)2 .
The pulse will split into two halves, which move to left and right without changing shape. When a
pulse hits an end of the interval, it reflects upside down. (For sketches see the similar problem in the
Test A Solutions for Fall 2000. In that case the boundary condition was different, so the pulses did
not invert upon reflection.) The d’Alembert formula for the solution is

u(x, t) = 1
2 [f(x− t) + f(x + t)],

where f is the odd periodic extension of the original f .

(b) Now assume instead that f(x) = sin x− 1
9 sin(3x) (which is not very sharply peaked).

Find a formula for u(x, t) as a finite Fourier series. (There are several ways to do this,
some quicker than others. Think before you launch a massive calculation.)

Method 1: Since f is already odd and 2π -periodic, we can use the d’Alembert formula immediately:

u(x, t) = 1
2 [sin(x− t) + sin(x + t)]− 1

18 [sin(3(x− t)) + sin(3(x + t))].

Now use trig identities to rearrange this into the Fourier form,

u(x, t) = sin x cos t− 1
9 sin(3x) cos(3t).

Method 2: Each term in f has the form appropriate to a normal mode for the wave equation
on [0, π] with Dirichlet boundary conditions, sin(nx)[a cos(nt)v + b sin(nt)] . Since the initial time
derivative is zero, the cosine terms don’t appear. Thus

u(x, t) = sin x cos t− 1
9 sin(3x) cos(3t).

Method 3: Go through the whole process of separation of variables. (But I hope you didn’t.)

4. (35 pts.) Solve Laplace’s equation in a square,

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, 0 < y < L,

with the boundary conditions

u(0, y) = T, u(L, y) = 0,
∂u

∂y
(x, 0) = 0,

∂u

∂y
(x, L) = f(x).

Note that f(x) is an arbitrary function and T is a (nonzero) constant.
There are two nonhomogeneous conditions (affecting different variables), so we should construct the
solution as a sum of two terms.

Best method: Since T does not depend on y , we can find a solution of the PDE and the
x-boundary conditions that is independent of y . (This is like a steady-state solution, although y is
not a time coordinate.) We have

V ′′(x) = 0, V (0) = T, V (L) = 0,
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hence
V (x) = Ax + B, B = T, AL + B = 0,

so

V (x) =
T

L
(L− x).

Now let w = u− V . It must satisfy

∂2w

∂x2
+

∂2w

∂y2
= 0, w(0, y) = 0, w(L, y) = 0,

∂w

∂y
(x, 0) = 0,

∂w

∂y
(x, L) = f(x).

(We don’t need to subtract V from f , because f is the y derivative in this problem.) Standard
separation of variables, wsep(x, y) = X(x)Y (y) , leads to

X ′′(x) + k2X(x) = 0, X(0) = 0 = X(L), Y ′′(y)− k2Y (y) = 0, Y ′(0) = 0.

As usual,

k = kn ≡ nπ

L
, Xn(x) = sin(knx).

We can take Yn(y) = cosh(kny) .
Superposing, we get the general solution

u(x, t) =

∞∑
n=0

bn sin(knx) cosh(kny).

This is required to satisfy the remaining boundary condition,

f(x) =

∞∑
n=1

bnkn sin(knx) sinh(kny).

Therefore,

bnkn sinh(kny) =
2

L

∫ L

0

f(x) sin(knx) dx

determines bn . Finally, u(x, t) = V (x) + w(x, t) .

Alternative method: Write u(x, t) = v(x, t) + w(x, t) , where

∂2v

∂x2
+

∂2v

∂y2
= 0, v(0, y) = T, v(L, y) = 0,

∂v

∂y
(x, 0) = 0,

∂v

∂y
(x, L) = 0,

and w satisfies the complementary equations, which turn out to be the same as in the other method.
Separation of variables in the v problem yields

X′′(x)− k2X(x) = 0, X(L) = 0, Y ′′(y) + k2Y (y) = 0, Y ′(0) = 0 = Y ′(L).

Thus

k = kn ≡ nπ

L
, Yn(y) = cos(kny), Xn(x) ∝

{
sinh[kn(L− x)] if n 6= 0,

L− x if n = 0.
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The superposition is

v(x, y) = a0(L− x) +

∞∑
n=1

an cos(kny) sinh[kn(L− x)].

It must satisfy

T = a0L +

∞∑
n=1

an cos(kny) sinh(knL).

Thus if n 6= 0

an sinh(knL) =
2

L

∫ L

0

T cos(kny) dy = 0.

For n = 0 we have

a0L =
1

L

∫ L

0

T dy = T,

so

v(x, y) =
T

L
(L− x).


