
Math. 412 (Fulling) 8 November 2005

Test B – Solutions

Calculators may be used for simple arithmetic operations only!

Famous integrals:

1
2π

∫ ∞

−∞
eikx e−k2t dk =

1√
4πt

e−x2/4t ,
1
2π

∫ ∞

−∞
eikx e−|k|y dk =

1
π

y

x2 + y2
.

1. (20 pts.) Use Parseval’s equation to evaluate
∫ ∞

−∞
dx

(x2 + 4)2
.

Parseval’s equation for Fourier transforms is

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(k)|2 dk.

Let y = 2 in the second famous integral:

1

2π

∫ ∞

−∞
eikx e−2|k| dk =

1

π

2

x2 + 4
.

Therefore, if

f(x) =
1

x2 + 4
=

1√
2π

∫ ∞

−∞
eikxf̂(k) dk ,

then

f̂(k) =
π

2

√
2π

1

2π
e−2|k| =

√
2π

4
e−2|k|.

Thus ∫ ∞

−∞
|f(x)|2 dx =

2π

16

∫ ∞

−∞
e−4|k| dk =

4π

16

∫ ∞

0

e−4k dk =
π

4

e−4k

−4

∣∣∣∣
∞

0

=
π

16
.

Check: (If you have had a complex analysis course, you know Cauchy’s integral formula.)

∫ ∞

−∞

dx

(x2 + 4)2
= 2πi

d

dx

1

(x + 2i)2

∣∣∣∣
x=2i

=
−4πi

(x + 2i)3

∣∣∣∣
x=2i

=
−4πi

(4i)3
=

π

16
.
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2. (45 pts.) Solve
∂u

∂t
=

∂2u

∂x2
(0 < t <∞, 0 < x < 1),

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, 1) = −2u(t, 1),

u(0, x) = f(x).

Recommended strategy: Indicate graphically how to find the eigenvalues involved. Intro-
duce a suitable notation for the eigenfunctions, and (required) state the orthogonality
and completeness relations satisfied by those functions. Then finish the solution.

First look for separated solutions, u = X(x)T (t) . As usual we get (assuming for the moment that
all the eigenvalues are positive)

T ′

T
=

X′′

X
= −ω2, so T = e−ω2t.

Then
X′′ = −ω2X, X ′(0) = 0 imply X ∝ cos(ωx),

and
X′(1) = −2X(1) implies − ω sin ω = −2 cos ω.

This equation can be written
ω

2
= cotω

and solved graphically:

..................
..................

.................
..................

..................
..................

..................
..................

..................
..................

.................
..................

..................
..................

..................
..................

..................
.................

..................
..................

..............

......................................................................................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................................................................................................................................

ω1 ω2π
2

3π
2

π

The smallest ω is somewhere less than π
2 , and the large ones are slightly greater than (n − 1)π .

Negative ω give no new eigenvalues ( ω2 ).
We should check (extra credit!) that there are no negative eigenvalues (that is, ω = iκ , κ real).

This follows from the general Sturm–Liouville theorem (or an integration by parts) because the inward
normal derivative is a positive multiple of X itself. But let’s show it directly:

X ′′ = +κ2X ⇒ X(x) = cosh(κx) ⇒ κ sinh κ = −2 cosh κ ⇒ coth k = − κ

2
.

Since coth κ and −κ always have opposite signs, there are no roots. (Also, it’s easy to see that 0
is not an eigenvalue.)
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Define

Xn(x) = cos(ωnx), φn(x) =
Xn(x)

‖Xn‖ ,

where

‖Xn‖2 =

∫ 1

0

Xn(x)2 dx.

The integral can be evaluated (more extra credit!):

‖Xx‖2 =

∫ 1

0

cos2(ωnx) dx =
1

2

∫ 1

0

[1 + cos(2ωnx)] dx =
1

2
+

1

4ωn
[cos(2ωn)− 1].

In terms of φn the orthonormality relation is

∫ 1

0

φn(x)∗φm(x) dx = δnm

and the completeness relation is

∞∑
n=1

φn(x)φm(y)∗ = δ(x− y).

(The stars can be omitted since the eigenfunctions are real.) In terms of Xn the relations are more
complicated.

We can now write the general solution as

u(t, x) =

∞∑
n=1

cne−ωn
2tφn(x)

and calculate the coefficients as

cn =

∫ 1

0

φn(x)∗f(x) dx.

3. (30 pts.) Assume that you have a solution v(x, y) for the next problem. (You don’t
need to do that problem before doing this one.) Solve (by separation of variables or an
equivalent transform technique)

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
(0 < t <∞, −∞ < x <∞, 0 < y <∞),

u(0, x, y) = g(x, y), u(t, x, 0) = f(x).

Since v is a steady-state solution for this problem, we need only find w = u− v , which satisfies

∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
(0 < t < ∞, −∞ < x < ∞, 0 < y < ∞),
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w(0, x, y) = g(x, y)− v(x, y) ≡ h(x, y), w(t, x, 0) = 0.

Take a Fourier transform in x and a sine transform in y :

∂ŵ

∂t
= −k2ŵ − p2ŵ, ŵ(0, k, p) = ĥ(k, p),

where

ĥ(k, p) ≡ 1√
2π

√
2

π

∫ ∞

−∞
dx

∫ ∞

0

dy e−ikx sin(py)w(x, y)

and ŵ is defined similarly. The solution for the transform is

ŵ(t, k, p) = ĥ(k, p)e−(k2+p2)t,

and hence the solution of the problem is

u(t, x, y) = v(x, y) +
1

π

∫ ∞

−∞
dk

∫ ∞

0

dp eikx sin(py)e−(k2+p2)tĥ(k, p).

4. (30 pts.) Consider the problem

∂2v

∂x2
+

∂2v

∂y2
= 0 (−∞ < x <∞, 0 < y <∞),

v(x, 0) = f(x) (−∞ < x <∞).

Solve the problem, leaving the answer in the Green function form, v =
∫

Gf . (It is up to
you to fill in the correct variables, limits of integration, etc.) Write out as many details
of the solution process as you need to be confident that your solution is correct. (If you
have time, write out the remaining details.)

This one is straight out of the class notes (although not stressed in lecture this year), so I will not
type it out. Suffice it to say that the Green function is given by the second famous integral.


