
Airy’s Integral

Solution by Fourier transform

Airy functions are solutions of
d2y

dx2
= xy.

It is easy to see that solutions of

d2y

dx2
= ω2xy and

d2y

dx2
= xy −Ey

are also Airy functions with rescaled or displaced arguments, and hence the limits of large
|x|, large ω, and large |E| are essentially the same things. There is a distinguished solution,
called Ai(x), that decays rapidly as x → +∞. All solutions linearly independent of Ai
grow rapidly in that limit, and one of them is conventionally named Bi(x). As x → −∞
both Ai and Bi are oscillatory with a slow decay, like Bessel functions.

Airy’s is one of the few variable-coefficient ordinary differential equations that can be
easily solved by a Fourier transform. Let’s define the transform by

ŷ(p) =
∫ ∞

−∞
e−ipxy(x) dx.

Then
d

dx
7→ +ip,

d

dp
7→ −ix.

The equation becomes −p2ŷ = idŷ
dp , or

dŷ

dp
= ip2ŷ.

The only solutions are multiples of

ŷ(p) = eip3/3.

So we ought to get a solution of Airy’s equation from the formula

y(x) =
1
2π

∫ ∞

−∞
eipxeip3/3 dp ≡ Ai(x) (∗)

(Airy’s integral).
But we were supposed to get two independent solutions, right? The Fourier transform

turned a second-order equation into a first-order one, so we lost half of the solutions (by
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dimension count) at the first step. The solutions that are not proportional to Ai (i.e.,
that are a Ai+b Bi with b 6= 0) grow so rapidly at infinity that their Fourier transforms are
not well-defined. (They can be constructed, however, in terms of integrals in the complex
plane with integrands that are essentially the same as in Airy’s integral.)

Another initially puzzling thing about Airy’s integral is that it may appear to diverge
at infinity. Recall that a series

∑∞
n=1 eiθn with real θn must diverge, because the terms

do not tend to zero (except in the extended sense in which such a series can converge
to a Dirac delta function, say). However, an improper integral can converge even if the
integrand maintains modulus 1, just because the speed of oscillation increases as p → ±∞.
In the case at hand that can be checked by integration by parts to reduce the formula to
an integral with a p3 in the denominator plus other manifestly finite terms.

Oscillatory region: Large negative x

Let φ(p) = px + p3/3, so that the integrand of (∗) is eiφ. We apply the method of
stationary phase: One’s intuition is that the integral should receive very little contribution
from intervals of p where the integrand is rapidly oscillating. In other words, most of the
integral comes from the vicinity of points where φ is not changing at all. We solve

0 = φ′(p0) = x + p0
2.

If x > 0 there are no real solutions for p0 , and we put that case aside. If x ≡ −z < 0, then
p0 = ±√z.

Now expand the exponent in a power series around p0:

2π Ai(x) =
∫ ∞

−∞
eiφ(p) dp

≈
∑
±

∫ ∞

−∞
ei[φ(p0)+

1
2 (p−p0)2φ′′(p0)+···] dp

≈
∑
±

∫ ∞

−∞
ei[∓z3/2±z3/2/3+ 1

2 (p∓√z)2(±2
√

z)] dp

=
∑
±

e∓2iz3/2/3

∫ ∞

−∞
e±i

√
z(p∓√z)2 dp

=
∑
±

e∓2iz3/2/3

√
π

±i
√

z

=
∑
±

√
π(−x)−1/4e±iπ/4e∓2iz3/2/3

= 2
√

π(−x)−1/4 cos
(

2
3
(−x)3/2 − π

4

)
.

This approximation is more accurate the larger z is.
More generally, any solution of Airy’s equation will behave at large −x as some linear

combination of (−x)−1/4e±2i(−x)3/2/3. This fact could have established by a calculation
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similar to the one we carried out for the Bessel function (see also below). The analysis of
Airy’s integral goes that one one better; it shows which linear combination corresponds to
the particular solution Ai.

Decay region: Large positive x

Since φ′ is never zero in this case, we can integrate by parts to our hearts’ content:

2pi Ai(x) =
∫ ∞

−∞

1
iφ′(p)

d

dp
eiφ dp

= −
∫ ∞

−∞

d

dp

(
1

iφ′(p)

)
eiφ dp

= −i

∫ ∞

−∞

φ′′

(φ′)2
eiφ dp

= −2i

∫ ∞

−∞

p

(x + p2)2
eiφ dp = O(x−2)

= −2i

∫ ∞

−∞

p

(φ′)2
1

iφ′
d

dp
eiφ dp

= −2
∫ ∞

−∞

d

dp

p

(x + p2)3
eiφ dp = O(x−4),

etc. Since we could go on like this forever, we see that Ai(x) decreases faster than any
(negative) power of x as x → +∞.

This observation verifies that Ai is the solution of Airy’s equation that decays rapidly
at large x. On the other hand, we will show that any solution behaves in that limit as a
linear combination of x−1/4e±2x3/2/3. So

Ai(x) ∼ Cx−1/4e−2x3/2/3.

To determine C from the integral (∗) requires techniques of complex analysis that are
beyond the scope of this course. (Answer: C = 1

2
√

π
.)

To establish the claim, carry out a calculation similar to that for the Bessel asymp-
totics, but without the i in the exponent: Write Airy’s equation as y′′ = ω2xy. (Later
we’ll set ω = 1, since we’re more interested in large x than in large ω, but inserting the
so-called “formal” parameter ω makes it easier to keep track of the relative sizes of the
various terms.) Make the ansatz y = Ae−S/ω. Then

y′′ = e−S/ω

[
1
ω2

(S′)2A− 1
ω

(S′′A + 2S′A′) + A′′
]

,

and so the differential equation is equivalent to

0 = [(S′)2 − x]A− ω(S′′A + 2S′A′) + ω2A′′.
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This is satisfied to leading order if S′ = ±√x, or

S = ±2
3
x3/2.

If we then let A = A0 + ω−1A1 + · · ·, we find to lowest order that S′′A0 + 2S′A′0 = 0, or

A′0
A0

= −1
2

S′′

S′
= − 1

4x
,

whence lnA0 = − 1
4

ln x, or A0 = x−1/4. (As usual in such calculations, the constants of
integration get absorbed into normalization constants multiplying the basis solutions we’re
constructing.) Finally, then, we arrive at

y(x) = x−1/4e±2x3/2/3,

as predicted.

Turning points and WKB approximations in general

Consider a differential equation of the form

− d2y

dx2
+ ω2[V (x)− E]y = 0. (†)

Many other linear second-order equations, including Bessel’s, can be put into this form by
change of variable. (In (†) I’m using notation suggestive of quantum mechanics, except for
using ω in the same role as elsewhere in these notes.) Suppose for definiteness that there
is exactly one place, x0 , where V (x0) = E, with

[V (x)−E]
{

< 0 for x < x0 ,
> 0 for x > x0 .

For x < x0 the solutions are oscillatory, and a phase-integral construction like the one for
Bessel’s equation shows that y is a linear combination of two solutions that are approxi-
mated for large ω by

[E − V (x)]−1/4e
±iω

∫
x

0

√
E−V (x̃) dx̃

. (])

For x > x0 the solutions are (roughly) exponential in behavior, and a construction like
that above for the Airy functions shows that y is a linear combination of two solutions
that are approximated for large ω by

[V (x)− E]−1/4e
±ω

∫
x

0

√
V (x̃)−E dx̃

. ([)

One would like to know which linear combination of the solutions (]) is the continuation
of the exponentially decaying solution in ([).
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For x near x0 neither of the phase-integral solutions is accurate. (Indeed, [V (x) −
E]−1/4 goes to infinity at x0 whereas the true solution must be well behaved.) This
question has been answered by expanding V (x) in a power series around x0 and keeping
just the first few terms. (We assume that V is differentiable at least a few times and that
V ′(x0) 6= 0.) The solution (\) to this approximate equation is an Airy function (Ai with
the variables suitably rescaled); it is a good approximation to y when |x−x0| is very small.
From our previous discussion we know the asymptotic behavior of (\) in the two regions
x < x0 and x > x0. These expressions can be “matched” to the phase-integral solutions to
the true differential equation to find out how the solutions ([) “connect” to the solutions
(]). It isn’t necessary to repeat this calculation every time; most quantum mechanics books
will just tell you the answer: The decaying solution in ([) (with coefficient 1) evolves into
the oscillatory solution

2[E − V (x)]−1/4 cos
(

ω

∫ 0

x

√
E − V (x̃) dx̃− π

4

)
,

which matches our result for Airy’s equation itself, where
∫ x

0

√
E − V dx̃ = 2

3 (−x)3/2.
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