
Asymptotics of Bessel Functions

We were naturally led to Bessel’s equation in the generalized form

d2R

dr2
+

1
r

dR

dr
+

(
ω2 − n2

r2

)
R = 0.

Its solutions are called Jn(ωr) and Yn(ωr). Our aim now is to gain some understanding of
how the previously stated formulas for the approximate behavior of the Bessel functions
in the limit of large r are derived.

Notice that the limit of large r at fixed positive ω is equivalent to the limit of large ω
at fixed positive r. So we proceed, assuming that ωr � n. Let’s search for a solution of
the form R = AeiωS , where S and A are functions of r; A may also depend on ω but stays
bounded as ω →∞.

R′ = iωS′AeiωS + A′eiωS ,

R′′ = −ω2(S′)2AeiωS + iωS′′AeiωS + 2iωS′A′eiωS + A′′eiωS .

Therefore, the equation is equivalent to

0 = −ω2
[
(S′)2 − 1

]
A + iω

(
S′′A + 2S′A′ +

S′A
r

)
+ A′′ +

A′

r
− n2

r2
A. (∗)

The only way (∗) can be true, given our assumption about the behavior of A, is to
have

(S′)2 = 1.

Thus S′ = ±1, so
S = ±r ( + constant).

The two signs will yield two linearly independent solutions; the constant contributes a
trivial constant phase factor, so it can be ignored.

After division by iω the rest of (∗) is (since S′′ = 0)

0 = ±2A′ ± A

r
− i

ω

(
A′′ +

A′

r
− n2A

r2

)
.

Now assume that A has an expansion of the form

A ∼
∞∑

j=0

ω−jAj .
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(I write “∼” instead of “=” because the series may not converge. All that is claimed is
that the first few terms of the series are a good approximation when ω is sufficiently small.
(And today we won’t prove even that.)) Well, we get

A′ ∼
∞∑

j=0

ω−jA′j , A′′ ∼
∞∑

j=0

ω−jA′′j ,

and hence

0 = ±2
∞∑

j=0

ω−jA′j ±
∞∑

j=0

ω−j Aj

r
− i

∞∑
j=0

ω−(j+1)

(
A′′j +

A′j
r
− n2Aj

r2

)
. (†)

The last term in (†) can be rewritten

−i
∞∑

j=1

ω−j

(
A′′j−1 +

A′j−1

r
− n2Aj−1

r2

)
.

We can now set the expression multiplying each ω−j successively to 0. For j = 0 we
get

0 = ±2A′0 ±
A0

r
,

hence A′0 = −A0/(2r), a separable equation whose solutions are

A0 = Cr−1/2.

So far we have

R(r) ∼ A0e
iωS = C

e±iωr

√
r

.

This is exactly what we expected! Recall that according to the handbooks there are two
special solutions of Bessel’s equation,

H(1)
n (ωr) ∼

√
2

πωr
(−i)n+ 1

2 eiωr,

H(2)
n (ωr) ∼

√
2

πωr
in+ 1

2 e−iωr,

and J is the sum of these,

Jn(ωr) ∼
√

2
πωr

cos
(
ωr − nπ

2
− π

2

)
. (‡)

Let’s press on to the j = 1 term in (†). Setting C = 1, we get

2A′1 +
A1

r
= ∓i

(
A′′0 +

A′0
r
− n2A0

r2

)

= ∓i

(
1
4
− n2

)
r−5/2.
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This is like the j = 0 equation but with a nonhomogeneous term, so we can solve it by
using the reciprocal of A0 as an integrating factor. That is, multiply by r+1/2 to get

d

dr
(2r1/2A1) = 2A′1r

1/2 + A1r
−1/2 = ±i

(
n2 − 1

4

)
r−2.

The solution is

A1 = ∓i

(
n2 − 1

4

)
1

2r3/2
+

C√
r

.

We can set C = 0 because that term can be absorbed into A0 ; with this understanding, the
additional factor of 1/ω in ω−1A1 is accompanied by an additional factor of r (relative to
the A0 term), in keeping with our expectation that ω and r should always appear together.

In summary,

R(ωr) ∼ e±iωr

√
r

[
1∓ i

2ωr

(
n2 − 1

4

)
+ · · ·

]
.

We could continue and derive higher-order terms.
That was the easy part. The harder mystery is why Jn , defined as the solution with

a certain behavior as r → 0, is the solution with particular large-r behavior (‡). Both the
phase shift inside the cosine and the normalization factor

√
2/π deserve to be explained.

Unfortunately, we do not have either the time or the mathematical tools (from complex
analysis) to answer these questions. Some inkling of what is involved can be obtained from
the simpler example of the Airy function, the subject of my next bulletin.
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