Test B - Solutions

Calculators may be used for simple arithmetic operations only!

When a question appears in two versions, answer the version appropriate to your status (honors or regular). Then work on the other version if you have time.

Famous integrals:

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} e^{-k^{2} t} d k=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}, \quad \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} e^{-|k| y} d k=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}
$$

1. (35 pts.) Solve by separation of variables or an equivalent transform technique:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad(0<x<\infty, \quad 0<y<\infty) \\
\frac{\partial u}{\partial x}(0, y)=0 \quad(0<y<\infty) \\
u(x, 0)=f(x) \quad(0<x<\infty)
\end{gathered}
$$

(Consider only bounded solutions.)
By separation of variables, or from general savvy about transforms, we see that the solution is a Fourier cosine transform in x :

$$
u(x, y)=\int_{0}^{\infty} Y_{k}(y) \cos (k y) d k
$$

So, what is A ?
Variable-separation thinking: The transverse part of the mode must satisfy $Y_{k}^{\prime \prime}-k^{2} Y_{k}=0$, hence, to be bounded at $+\infty, Y_{k}(y)=A_{k} e^{-k y} . A_{k}$ must be chosen to satisfy the initial condition, so it turns out to be

$$
A_{k}=\frac{2}{\pi} \int_{0}^{\infty} \cos (k x) f(x) d x
$$

Transform thinking: Take the cosine transform of the PDE and the IC:

$$
-k^{2} \hat{u}+\frac{\partial^{2} \hat{u}}{\partial y^{2}}=0, \quad \hat{u}(k, 0)=\hat{f}(k) .
$$

The (bounded) solution is

$$
\hat{u}(k, y)=\hat{f}(k) e^{-k y}
$$

where \hat{f} is, up to your favorite normalization constant, the same as A_{k} earlier.
In either case, then,

$$
u(x, y)=\int_{0}^{\infty} A_{k} e^{-k y} \cos (k x) d k
$$

with A_{k} as above.
2. (30 pts.) (regular) Find the Green function that gives the solution of Qu. 1 in the form

$$
u(x, y)=\int_{0}^{\infty} G(x, z, y) f(z) d z
$$

(There are two methods. Do evaluate the integral if your method leads to one.)
Method 1: Use the results from Qu. 1; substitute

$$
A_{k}=\frac{2}{\pi} \int_{0}^{\infty} \cos (k z) f(z) d z
$$

into the u formula and strip off the z integral to get

$$
G(x, z, y)=\frac{2}{\pi} \int_{0}^{\infty} e^{-k y} \cos (k x) \cos (k z) d k
$$

To evaluate the integral, extend it over the whole real line as

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} e^{-|k| y} \cos (k x) \cos (k z) d k
$$

and use $\cos w=\frac{1}{2}\left(e^{i w}+e^{-i w}\right)$ to get (after changing $k \rightarrow-k$ in half the terms)

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[e^{i k(x-z)}+e^{-i k(x+z)}\right] e^{-|k| y}
$$

Use the second of the famous integrals to write this as

$$
G(x, z, y)=\frac{1}{\pi}\left[\frac{y}{(x-z)^{2}+y^{2}}+\frac{y}{(x+z)^{2}+y^{2}}\right] .
$$

Method 2: The Green function for Laplace's equation in the upper half plane is well known to be the second famous integral with x replaced by $x-z$. By the method of images for a Neumann boundary, the Green function for our problem is the sum of that with the same function evaluated at $x+z$ (see conclusion of the first method).
2. (30 pts.) (honors) Use a (well known) Green function to solve

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<\infty, \quad 0<t<\infty) \\
\frac{\partial u}{\partial x}(0, t)=0 \quad(0<t<\infty) \\
u(x, 0)=f(x) \quad(0<x<\infty)
\end{gathered}
$$

Method 1: The Green function for the heat equation on the whole real line is well known to be the first famous integral with x replaced by $x-z$. By the method of images for a Neumann boundary, the Green function for our problem is the sum of that with the same function evaluated at $x+z$:

$$
G(x, z, t)=\frac{1}{\sqrt{4 \pi t}}\left[e^{-(x-z)^{2} / 4 t}+e^{-(x+z)^{2} / 4 t}\right] .
$$

Method 2: Proceed as in Qu. 1 and Qu. 2-regular, Method 1: Solve the heat equation by separation of variables, plug the coefficient formula into the answer, and interchange the order of integrations to get

$$
G(x, z, t)=\frac{2}{\pi} \int_{0}^{\infty} e^{-k^{2} t} \cos (k x) \cos (k z) d k
$$

Do the trig and algebra to write this as the sum of two versions of the first famous integral.
3. (35 pts.) Construct the Green function that solves

$$
\begin{gathered}
y^{\prime \prime}+9 y=f(x) \quad(0<x<\pi) \\
y(0)=0, \quad y^{\prime}(\pi)=0
\end{gathered}
$$

Clearly state the formula for calculating y from G and f.
The Green function should satisfy

$$
\begin{align*}
& \frac{\partial^{2} G}{\partial x^{2}}+9 G=\delta(x-z) \tag{1}\\
& G(0, z)=0=\frac{\partial G}{\partial x}(\pi, z) \tag{2}
\end{align*}
$$

And (1) can be further explicated as

$$
\begin{gather*}
\frac{\partial^{2} G}{\partial x^{2}}+9 G=0 \quad(x \neq z) \tag{3}\\
G(z-\epsilon, z)=G(z+\epsilon, z), \quad \frac{\partial G}{\partial x}(z+\epsilon, z)-\frac{\partial G}{\partial x}(z-\epsilon, z)=1 \tag{4}
\end{gather*}
$$

A solution of (3) satisfying (2) must be of the form

$$
G(x, z)=\left\{\begin{array}{l}
A(z) \sin (3 x) \quad(x<z), \\
B(z) \cos (3(\pi-x))=-B \cos (3 x) \quad(x>z) .
\end{array}\right.
$$

Then from (4) we get

$$
\begin{aligned}
& \sin (3 z) A+\cos (3 z) B=0 \\
& -3 \cos (3 z) A-3 \sin (3 z) B=1
\end{aligned}
$$

The solution of this system is

$$
A=-\frac{1}{3} \cos (3 z), \quad B=\frac{1}{3} \sin (3 z)
$$

Thus

$$
G(x, z)= \begin{cases}-\frac{1}{3} \sin (3 x) \cos (3 z) & (x<z) \\ -\frac{1}{3} \cos (3 x) \sin (3 z) & (x>z)\end{cases}
$$

(The last line could also be written $+\frac{1}{3} \cos (3(\pi-x)) \sin (3 z)$.)
The formula for the solution of the original problem is

$$
y(x)=\int_{0}^{\pi} G(x, z) f(z) d z
$$

It could be written out as

$$
y(x)=-\frac{1}{3} \int_{0}^{x} \cos (3 x) \sin (3 z) f(z) d z-\frac{1}{3} \int_{x}^{\pi} \sin (3 x) \cos (3 z) f(z) d z
$$

