Test C - Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:

Laplacian operator in polar coordinates:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Bessel's equation:

$$
\frac{\partial^{2} Z}{\partial z^{2}}+\frac{1}{z} \frac{\partial Z}{\partial z}+\left(1-\frac{n^{2}}{z^{2}}\right) Z=0 \quad \text { has solutions } J_{n}(z) \text { and } Y_{n}(z)
$$

1. (50 pts.) Solving the heat or wave equation in an annulus (ring-shaped region) would lead to an eigenvalue problem

$$
\begin{gathered}
\nabla^{2} \Phi=-\omega^{2} \Phi \quad\left(r_{1}<r<r_{2}, \quad 0 \leq \theta<2 \pi\right) \\
\Phi\left(r_{1}, \theta\right)=0=\Phi\left(r_{2}, \theta\right)
\end{gathered}
$$

periodic boundary conditions in θ.
In turn, this problem has solutions of the form

$$
\Phi_{n}(r, \theta)=R_{n j}(r) \sin (n \theta), \quad \Psi_{n}(r, \theta)=R_{n j}(r) \cos (n \theta)
$$

(a) Find the allowed eigenfunctions $R_{n j}$ as explicitly as you can.

Substituting the given form of Φ or Ψ into the equation, we get

$$
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}-\frac{n^{2}}{r^{2}} R+\omega^{2} R=0
$$

Letting $z=\omega r$ scales out ω to reduce this to Bessel's equation. Therefore,

$$
R(r)=a J_{n}(\omega r)+b Y_{n}(\omega r)
$$

The boundary conditions require that

$$
\begin{aligned}
& 0=R\left(r_{1}\right)=a J_{n}\left(\omega r_{1}\right)+b Y_{n}\left(\omega r_{1}\right), \\
& 0=R\left(r_{2}\right)=a J_{n}\left(\omega r_{2}\right)+b Y_{n}\left(\omega r_{2}\right) .
\end{aligned}
$$

These equations have a nontrivial solution for a and b if and only if the determinant vanishes:

$$
0=\left|\begin{array}{ll}
J_{n}\left(\omega r_{1}\right) & Y_{n}\left(\omega r_{1}\right) \\
J_{n}\left(\omega r_{2}\right) & Y_{n}\left(\omega r_{2}\right)
\end{array}\right|=J_{n}\left(\omega r_{1}\right) Y_{n}\left(\omega r_{2}\right)-Y_{n}\left(\omega r_{1}\right) J_{n}\left(\omega r_{2}\right) .
$$

This equation (which can't be solved by exact methods) determines the allowed eigenfrequencies $\omega_{n j}$. Then either of the boundary conditions can be solved to yield the ratio of a to b in each corresponding eigenfunction. (Alternatively, start by using one of the equations to fix a / b, then use the other one to determine the allowed eigenvalues.)
(b) For a fixed n (but varying j) what orthogonality and completeness relations do you expect the functions $R_{n j}(r)$ to obey?
The problem

$$
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}-\frac{n^{2}}{r^{2}} R+\omega^{2} R=0, \quad R\left(r_{1}\right)=0=R\left(r_{2}\right)
$$

is a regular Sturm-Liouville problem, so the eigenfunctions form a complete, orthogonal set. (We should check that we have not missed any modes. A standard integration-by-parts argument shows that ω^{2} must indeed be positive. Alternatively, the lowest eigenfunction in our list clearly has no nodes inside the interval - since otherwise we could scale that zero to an endpoint to create a mode with a lower positive eigenvalue - so it is indeed the lowest eigenfunction of all, by the Sturm theory.) The differential equation can be rewritten in the explicit SL form

$$
\frac{d}{d r}\left(r \frac{d R}{d r}\right)-\frac{n^{2}}{r} R=-\omega^{2} r R
$$

which shows that the weight function is r. Therefore, the orthogonality relation is

$$
\int_{r_{1}}^{r_{2}} R_{n j}(r) R_{n k}(r) r d r=0 \quad \text { unless } j=k
$$

(The Bessel functions for different n are not orthogonal; that burden is carried by the trig functions in Φ and Ψ.) To get orthonormal basis functions we need to divide $R_{n j}$ by

$$
\left\|R_{n j}\right\|=\sqrt{\int_{r_{1}}^{r_{2}} R_{n j}(r)^{2} r d r}
$$

Therefore, the completeness relation is

$$
\sum_{j=1}^{\infty} \frac{1}{\left\|R_{n j}\right\|^{2}} R_{n j}(r) R_{n j}\left(r^{\prime}\right)=\frac{1}{r} \delta\left(r-r^{\prime}\right)
$$

(The r in the denominator could also be written r^{\prime} or $\sqrt{r r^{\prime}}$. One way to check that that factor is correct is to multiply the completeness relation by $r R_{n k}(r) /\left\|R_{n k}\right\|$ and integrate over r, using the orthonormality relation to get $R_{n k}(r) /\left\|R_{n k}\right\|$ back again.)
(c) Show how to expand an arbitrary function $f(r, \theta)$ (defined on the annulus) as a series in the functions $\Phi_{n j}$ and $\Psi_{n j}$. (Now n and j both vary.)
Since the $R_{n j}(r) /\left\|R_{n j}\right\|$ are orthonormal and complete, and so are the trig functions when multiplied by $1 / \sqrt{\pi}$, we can expand

$$
f(r, \theta)=\sum_{n=0}^{\infty} \sum_{j=1}^{\infty}\left[a_{n j} \Phi_{n j}+b_{n j} \Psi n j\right]
$$

with

$$
a_{n j}=\frac{1}{\pi\left\|R_{n j}\right\|^{2}} \int_{0}^{2 \pi} d \theta \int_{r_{1}}^{r_{2}} r d r \sin (n \theta) R_{n j}(r) f(r, \theta)
$$

and the analogous formula for $b_{n j}$. No, that isn't quite right: $n=0$ creates its usual problems. The modes $\Phi_{0 j}$ don't exist, and the $\Psi_{0 j}$ have an extra $\frac{1}{2}$ in their coefficient formula.
2. (50 pts.) Consider Laplace's equation in the region

$$
0 \leq r<r_{1}, \quad 0<\theta<\frac{\pi}{2}
$$

(a) Solve the problem with the boundary conditions

$$
u(r, 0)=0
$$

and either
(regular)

$$
u\left(r, \frac{\pi}{2}\right)=0, \quad u\left(r_{1}, \theta\right)=g(\theta)
$$

or
(honors)

$$
u\left(r, \frac{\pi}{2}\right)=f(r), \quad u\left(r_{1}, \theta\right)=0
$$

Regular: This is a rather standard problem, so I'll just state the result. (But see also the first steps of the honors solution and switch the signs.) In θ we have a Fourier sine series with $L=\frac{\pi}{2}$, so

$$
u(r, \theta)=\sum_{n=1}^{\infty} b_{n} r^{2 n} \sin (2 n \theta)
$$

with

$$
b_{n}=r_{1}^{-2 n} \frac{4}{\pi} \int_{0}^{\pi / 2} \sin (2 n \theta) g(\theta) d \theta
$$

Honors: We must expect oscillatory-type solutions in the radial direction and exponential-type solutions in the angular direction, so the sign of the separation constant must be the opposite of that in the previous case:

$$
\frac{\Theta^{\prime \prime}}{\Theta}=+k^{2}=-r^{2} \frac{R^{\prime \prime}}{R}-r \frac{R^{\prime}}{R}
$$

From the Dirichlet condition on the bottom edge we see that $\Theta(\theta) \propto \sinh (k \theta)$. The radial solutions are linear combinations of $r^{i k}$ and $r^{-i k}$, which we can also write $e^{i k u}$ and $e^{-i k u}$ with $u=\ln r$. The combination vanishing at r_{1} is $R(r)=\sin \left[k\left(u-u_{1}\right)\right], u_{1}=\ln r_{1}$. So a convenient new variable is $v=u_{1}-u$. As $r \rightarrow 0, v$ approaches $+\infty$ (hence the strange sign in its definition). Therefore, the appropriate eigenfunction expansion is a Fourier sine transform.

$$
\begin{gathered}
u(r, \theta)=\int_{0}^{\infty} B(k) \sinh (k \theta) \sin (k v) d v \\
B(k) \sinh (\pi k / 2)=\frac{2}{\pi} \int_{0}^{\infty} \sin (k v) f(r) d v
\end{gathered}
$$

To finish up we divide by the sinh and either write the r in $f(r)$ as $r=r_{1} e^{-v}$, or write

$$
\int_{0}^{\infty} \sin (k v) \cdots d v \quad \text { as } \quad \int_{0}^{r_{1}} \sin \left[k\left(\ln r_{1}-\ln r\right)\right] \cdots \frac{d r}{r} .
$$

(b) (essay) Explain how the results in (a) would be useful in solving the wave equation in that region with time-independent nonhomogeneous boundary conditions.
The solution of the wave equation will be a sum of a solution with the corresponding homogeneous boundary conditions and a steady-state solution that satisfies Laplace's equation with the given nonhomogeneous boundary data. If the data are all Dirichlet, the steady-state solution will be a sum of three terms, the two we just found plus something similar to the honors solution to handle the data on the edge $\theta=0$. The steady-state solution must be subtracted from the initial data for the wave equation before solving the homogenized wave problem.

