
Math. 412 (Fulling) 16 November 2007

Test C – Solutions

Calculators may be used for simple arithmetic operations only!

Useful information:
Laplacian operator in polar coordinates:

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

Bessel’s equation:

∂2Z

∂z2
+

1
z

∂Z

∂z
+

(
1− n2

z2

)
Z = 0 has solutions Jn(z) and Yn(z) .

1. (50 pts.) Solving the heat or wave equation in an annulus (ring-shaped region) would lead
to an eigenvalue problem

∇2Φ = −ω2Φ (r1 < r < r2 , 0 ≤ θ < 2π) ,

Φ(r1, θ) = 0 = Φ(r2, θ) ,

periodic boundary conditions in θ .

In turn, this problem has solutions of the form

Φn(r, θ) = Rnj(r) sin(nθ) , Ψn(r, θ) = Rnj(r) cos(nθ) .

(a) Find the allowed eigenfunctions Rnj as explicitly as you can.
Substituting the given form of Φ or Ψ into the equation, we get

d2R

dr2
+

1

r

dR

dr
− n2

r2
R + ω2R = 0 .

Letting z = ωr scales out ω to reduce this to Bessel’s equation. Therefore,

R(r) = aJn(ωr) + bYn(ωr) .

The boundary conditions require that

0 = R(r1) = aJn(ωr1) + bYn(ωr1) ,

0 = R(r2) = aJn(ωr2) + bYn(ωr2) .

These equations have a nontrivial solution for a and b if and only if the determinant vanishes:

0 =

∣∣∣∣ Jn(ωr1) Yn(ωr1)

Jn(ωr2) Yn(ωr2)

∣∣∣∣ = Jn(ωr1)Yn(ωr2)− Yn(ωr1)Jn(ωr2) .

This equation (which can’t be solved by exact methods) determines the allowed eigenfrequencies
ωnj . Then either of the boundary conditions can be solved to yield the ratio of a to b in each
corresponding eigenfunction. (Alternatively, start by using one of the equations to fix a/b , then use
the other one to determine the allowed eigenvalues.)
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(b) For a fixed n (but varying j ) what orthogonality and completeness relations do you
expect the functions Rnj(r) to obey?

The problem
d2R

dr2
+

1

r

dR

dr
− n2

r2
R + ω2R = 0 , R(r1) = 0 = R(r2) ,

is a regular Sturm–Liouville problem, so the eigenfunctions form a complete, orthogonal set. (We
should check that we have not missed any modes. A standard integration-by-parts argument shows
that ω2 must indeed be positive. Alternatively, the lowest eigenfunction in our list clearly has no
nodes inside the interval — since otherwise we could scale that zero to an endpoint to create a mode
with a lower positive eigenvalue — so it is indeed the lowest eigenfunction of all, by the Sturm theory.)
The differential equation can be rewritten in the explicit SL form

d

dr

(
r

dR

dr

)
− n2

r
R = −ω2rR ,

which shows that the weight function is r . Therefore, the orthogonality relation is∫ r2

r1

Rnj(r)Rnk(r) r dr = 0 unless j = k .

(The Bessel functions for different n are not orthogonal; that burden is carried by the trig functions
in Φ and Ψ .) To get orthonormal basis functions we need to divide Rnj by

‖Rnj‖ =

√∫ r2

r1

Rnj(r)2 r dr .

Therefore, the completeness relation is

∞∑
j=1

1

‖Rnj‖2
Rnj(r)Rnj(r

′) =
1

r
δ(r − r′) .

(The r in the denominator could also be written r′ or
√

rr′ . One way to check that that factor is
correct is to multiply the completeness relation by rRnk(r)/‖Rnk‖ and integrate over r , using the
orthonormality relation to get Rnk(r)/‖Rnk‖ back again.)

(c) Show how to expand an arbitrary function f(r, θ) (defined on the annulus) as a series
in the functions Φnj and Ψnj . (Now n and j both vary.)

Since the Rnj(r)/‖Rnj‖ are orthonormal and complete, and so are the trig functions when multiplied
by 1/

√
π , we can expand

f(r, θ) =

∞∑
n=0

∞∑
j=1

[anjΦnj + bnjΨnj]

with

anj =
1

π‖Rnj‖2
∫ 2π

0

dθ

∫ r2

r1

r dr sin(nθ)Rnj(r) f(r, θ)

and the analogous formula for bnj . No, that isn’t quite right: n = 0 creates its usual problems.

The modes Φ0j don’t exist, and the Ψ0j have an extra 1
2 in their coefficient formula.
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2. (50 pts.) Consider Laplace’s equation in the region

0 ≤ r < r1 , 0 < θ <
π

2
.

(a) Solve the problem with the boundary conditions

u(r, 0) = 0

and either

(regular) u
(
r,

π

2

)
= 0 , u(r1, θ) = g(θ)

or

(honors) u
(
r,

π

2

)
= f(r) , u(r1, θ) = 0 .

Regular: This is a rather standard problem, so I’ll just state the result. (But see also the first steps
of the honors solution and switch the signs.) In θ we have a Fourier sine series with L = π

2 , so

u(r, θ) =

∞∑
n=1

bnr2n sin(2nθ)

with

bn = r−2n
1

4

π

∫ π/2

0

sin(2nθ)g(θ) dθ .

Honors: We must expect oscillatory-type solutions in the radial direction and exponential-type
solutions in the angular direction, so the sign of the separation constant must be the opposite of that
in the previous case:

Θ′′

Θ
= +k2 = −r2 R′′

R
− r

R′

R
.

From the Dirichlet condition on the bottom edge we see that Θ(θ) ∝ sinh(kθ) . The radial solutions

are linear combinations of rik and r−ik , which we can also write eiku and e−iku with u = ln r .
The combination vanishing at r1 is R(r) = sin[k(u−u1)] , u1 = ln r1 . So a convenient new variable
is v = u1 − u . As r → 0 , v approaches +∞ (hence the strange sign in its definition). Therefore,
the appropriate eigenfunction expansion is a Fourier sine transform.

u(r, θ) =

∫ ∞

0

B(k) sinh(kθ) sin(kv)dv ,

B(k) sinh(πk/2) =
2

π

∫ ∞

0

sin(kv)f(r)dv .

To finish up we divide by the sinh and either write the r in f(r) as r = r1e−v , or write∫ ∞

0

sin(kv) · · · dv as

∫ r1

0

sin[k(ln r1 − ln r)] · · · dr

r
.
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(b) (essay) Explain how the results in (a) would be useful in solving the wave equation in
that region with time-independent nonhomogeneous boundary conditions.

The solution of the wave equation will be a sum of a solution with the corresponding homogeneous
boundary conditions and a steady-state solution that satisfies Laplace’s equation with the given
nonhomogeneous boundary data. If the data are all Dirichlet, the steady-state solution will be a sum
of three terms, the two we just found plus something similar to the honors solution to handle the
data on the edge θ = 0 . The steady-state solution must be subtracted from the initial data for the
wave equation before solving the homogenized wave problem.


