
Math. 460, Sec. 500 Fall, 2011

Special Relativity and Electromagnetism

The following problems (composed by Professor P. B. Yasskin) will lead you
through the construction of the theory of electromagnetism in special relativity.
Please write your response as a connected essay, similar to a chapter of a
textbook. If possible, use TEX or a word processor so that you can make
revisions easily. See the course handout for due dates. You may consult books
and have discussions with other students, but outright copying (except from
the problems themselves, when appropriate) is not allowed.

We regard spacetime as the vector space R4 with a Lorentz-signature metric (pseudo-
inner product). Thus, if we choose the orthonormal basis to be

e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1)

(so that all indices run from 0 to 3), and the dual basis to be ωα, then the metric is

η = ηαβω
α ⊗ ωβ, where ηαβ =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,

and the inverse metric is

η−1 = ηαβeα ⊗ eβ , where ηαβ =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

Derivatives will be denoted by ∂α =
∂

∂xα
, and indices will be raised and lowered using η

and η−1.

In problems 1–11, we will study the electromagnetic field, which is the 2-form

F = Fαβ ω
α ⊗ ωβ where Fαβ =







0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0






,

the electromagnetic potential, which is the 1-form

A = Aαω
α where Aα = (φ,A1, A2, A3),

and the electromagnetic current, which is the vector

J = Jαeα where Jα = (ρ, J1, J2, J3).
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1. Show that the rank-3 tensor

Sαβγ = ∂γFαβ + ∂αFβγ + ∂βFγα

is totally antisymmetric, and hence is a 3-form. (There are three pairs of indices to
transpose.) Show that this implies that the components of S are all zero except for
those for which α, β, and γ are distinct. Note: It is not necessary to write out a proof
in detail for every choice of the three indices. Start by showing that the formula for
S is unchanged when the three indices are subjected to a cyclic permutation.

Similarly, in the next few parts much writing can be saved by noting that the input
formulas are symmetric under cyclic permutations of the spatial indices (x→ y → z → x).

2. Write out the components of the equations

∂γFαβ + ∂αFβγ + ∂βFγα = 0 and ∂βF
αβ = 4πJα

to see that these are the Maxwell equations

~∇ · ~B = 0,

~∇× ~E + ∂t ~B = 0,

~∇ · ~E = 4πρ,

~∇× ~B − ∂t ~E = 4π ~J.

3. Write out the components of the equations

Fαβ = ∂αAβ − ∂βAα

to find expressions for ~E and ~B in terms of φ and ~A. (Note: φ is the negative of the
usual scalar potential.)

4. Show (in 4-dimensional notation) that if

Fαβ = ∂αAβ − ∂βAα

is satisfied, then
∂γFαβ + ∂αFβγ + ∂βFγα = 0

is automatically satisfied. (Note: The 3-dimensional version of these equations is

a pair of identities: ~∇ · ~∇ × ~A = 0 and ~∇ × ~∇φ = 0.) Consequently, this subset
of the Maxwell equations is actually an identity; it is sometimes referred to as the
electromagnetic Bianchi identity.

5. Substitute
Fαβ = ∂αAβ − ∂βAα

into the remaining Maxwell equation

∂βF
αβ = 4πJα

to obtain the Maxwell equation for Aα . Note: Part 7 will be much easier if you carry
out Part 5 entirely in 4-dimensional notation.
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6. Let χ be a function. Also let

A′

α = Aα + ∂αχ and F ′

αβ = ∂αA
′

β − ∂βA
′

α .

This is called a gauge transformation. Relate F ′

αβ to Fαβ to see that the electromag-
netic field is gauge-invariant.

7. The equation of motion you found above for Aα can be simplified by a gauge trans-
formation. We will use (twice) the fact that a wave equation (∂α∂αψ = σ) with an
arbitrary but specified source, σ, always has a solution, ψ (not unique). (Perhaps you
can find a reference for this theorem?) Given Aα , show that there always exists a
function χ such that A′

α satisfies

∂αA′

α = 0.

This gauge is called Lorenz gauge. Observe then that the components of the Maxwell
equation for A′

α are wave equations, and conclude that they always have solutions for
any arbitrary but specified current Jα.

8. Write out the components of the equation

∂αJ
α = 0

to see that this is conservation of electric charge. Show that if

∂βF
αβ = 4πJα

is satisfied, then

∂αJ
α = 0

is automatically satisfied. This is sometimes referred to as an automatic conservation
law. (Hint: If Aµν is an expression symmetric in its indices and Bµν is antisymmetric,
then one line of index algebra shows that AµνB

µν = 0.)

9. Write out the function

L = −1

4
F γδFγδ

in terms of ~E and ~B. This function is called the Lagrangian density for the vacuum
electromagnetic field. It is sometimes interpreted as the difference between the kinetic
energy 1

2
| ~E|2 and the potential energy 1

2
| ~B|2. Also write out the Lagrangian density

in terms of φ and ~A.
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10. Write out the components of the tensor

Tαβ =
1

4π

(

FαγF β
γ − 1

4
ηαβF γδFγδ

)

in terms of ~E and ~B, to see that this consists of the electromagnetic energy density,
momentum density, energy current, and momentum current (or stress). This tensor
is called the Maxwell energy-momentum-stress tensor.

11. In 4-dimensional notation, compute the divergence of the energy-momentum tensor
and use the Bianchi identities and the Maxwell equations to show that

∂βT
αβ = −JβFαβ.

Problem 11 shows that the electromagnetic energy-momentum is not conserved if the
current is nonzero. The reason for this is that we have ignored the energy-momentum
of the charged particles producing the current. In problem 12, we study the motion of a
charged particle. Then in problem 13 we study the energy-momentum tensor of a fluid of
charged particles.

12. A particle of mass m with electric charge q is moving on the parametrized path xα(τ)
where τ is the proper time. Consequently, it has unit timelike tangent vector

U = Uαeα, where Uα =
∂xα

∂τ
= (γ, γv1, γv2, γv3)

and where

γ =
1

√

1− |~v|2
.

Further, its 4-momentum is

pα = mUα.

Write out the components of the equations

Uβ∂β(p
α) = q UβFα

β

to obtain the Lorentz force and power laws. (Hints: Don’t expand pα. Be careful with
the factors of γ.)
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13. Consider a fluid of charged particles of rest massm and charge q, with fluid velocity Uα

and energy density ρ in the instantaneous local rest frame. Then the charge density
in the instantaneous local rest frame is (q/m)ρ and the electromagnetic current is

Jα =
q

m
ρUα.

Assuming that the particles are non-interacting except for their electromagnetic forces,
then

(i) the energy momentum tensor for the fluid is that for dust:

Tαβ
fluid

= ρUαUβ,

(ii) each particle moves according to the Lorentz force equation:

Uβ∂β(mU
α) = q UβFα

β ,

(iii) the energy momentum tensor for the electromagnetic field is

Tαβ
em =

1

4π

(

FαγF β
γ − 1

4
ηαβF γδFγδ

)

,

(iv) and the electromagnetic field satisfies the Bianchi identities and the Maxwell
equations with current Jα.

Then, as seen in problem 8, the electromagnetic current is conserved:

∂αJ
α = 0,

and, as seen in problem 11, the electromagnetic energy-momentum tensor satisfies

∂βT
αβ
em = −JβFαβ.

Now use the Lorentz force equation and the conservation of electromagnetic cur-
rent to show that the fluid energy-momentum tensor satisfies

∂βT
αβ
fluid

= JβF
αβ.

(Hint: Factor Tαβ
fluid

as

Tαβ
fluid

=
(

Uα
)(

ρUβ
)

and use the product rule.) Thus the total energy-momentum is conserved:

∂β
(

Tαβ
fluid

+ Tαβ
em

)

= 0.
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In problems 14 and 15, we study the behavior of the electromagnetic field under
rotations and Lorentz boosts. Under a general Lorentz transformation, Λα′

γ , the electro-
magnetic field transforms according to

Fα′β′ = Fγδ(Λ
−1)γα′(Λ−1)δβ′ .

We then write

Fγδ =







0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0






and Fα′β′ =







0 −E1
′ −E2

′ −E3
′

E1
′

0 B3
′ −B2

′

E2
′ −B3

′

0 B1
′

E3
′

B2
′ −B1

′

0






.

14. First assume that the Lorentz transformation is a rotation about the z-axis:

Λα′

γ =







1 0 0 0
0
0 R
0






where Ri′

j =





cosω sinω 0
− sinω cosω 0

0 0 1



 .

Show that ~E and ~B transform as vectors:

Ei′ = Ri′

jE
j and Bi′ = Ri′

jB
j .

Show that this generalizes to arbitrary rotation matrices. (Try to give a conceptual
argument, not a grubby calculation.)

15. Now assume that the Lorentz transformation is a boost in the z-direction with velocity
~v = vêz :

Λα′

γ =







cosh λ 0 0 sinhλ
0 1 0 0
0 0 1 0

sinhλ 0 0 cosh λ







where coshλ = γ =
1√

1− v2
and sinhλ = γv =

v√
1− v2

. Find expressions for ~E′

and ~B′ in terms of ~E and ~B and either λ or v.

In problems 16 and 17, we study the Lagrangian and Hamiltonian formulations of
electromagnetism. Each problem begins with a discussion of the analogous formulation
of classical mechanics and the situation for a general field theory with fields ψA, for A =
1, . . . , N . Then the special case of electromagnetism is treated with ψA replaced by Aα.
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16. In classical particle mechanics, the Lagrangian is

L = T − V = 1

2
m|~v|2 − V (~x).

In discussing this Lagrangian, it is useful to regard ~x and ~v =
d~x

dt
as independent

variables. One then computes

∂L

∂xi
= −∂iV and pi =

∂L

∂vi
= mvi .

(The quantity pi is called the momentum conjugate to xi.) Then the Euler–Lagrange
equations for this Lagrangian are

d

dt

∂L

∂vi
− ∂L

∂xi
= 0,

or
d

dt
(mvi) + ∂iV = 0,

which is Newton’s equation with the force identified as Fi = −∂iV , the gradient of
the potential.

Similarly, in field theory, in discussing a Lagrangian density, L, it is useful to
regard the fields ψA and their derivatives ∂αψ

A as independent variables. One then
computes

∂L
∂ψA

and πA
α =

∂L
∂∂αψA

.

(The quantity πA ≡ πA
0 is the conjugate momentum to ψA, while the 4-vector πA

α is
sometimes called the conjugate multimomentum to ψA .) Then the Euler–Lagrange
equations for the Lagrangian density, L, are

∂α

(

∂L
∂∂αψA

)

− ∂L
∂ψA

= 0.

Both sets of Euler–Lagrange equations given above can be derived from appro-
priate variational principles. In this exercise, we apply the field theory version to the
vacuum Maxwell Lagrangian density,

L = −1

4
F γδFγδ .

Compute
∂L
∂Aα

and παβ =
∂L

∂∂βAα

.
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Identify the conjugate momenta to A0 = φ and to Ai :

πα ≡ πα0 =
∂L

∂∂0Aα

.

Compute the Euler–Lagrange equations

∂β

(

∂L
∂∂βAα

)

− ∂L
∂Aα

= 0

and verify that these are the vacuum Maxwell equations.

Hints: Explicitly write out all metrics in L (but do not use α or β as dummy
indices). At the first step, do not expand F in terms of derivatives of A. Use the
chain rule. Then compute the derivatives of F using formulas such as

∂∂δAγ

∂∂βAα

= δδβδ
γ
α .

17. In classical mechanics, the Hamiltonian is

H = piv
i − L(~x,~v)

but expressed as a function of ~x and ~p :

H =
~p 2

m
−

[

~p 2

2m
− V (~x)

]

=
~p 2

2m
+ V (~x) = T + V.

Similarly, for a field theory, the Hamiltonian density is

H = πA∂0ψ
A − L(ψA, ∂αψ

A),

but expressed as a function of ψA, ∂iψ
A, and πA . For electromagnetism with no

sources (Jα = 0), express the Hamiltonian density

H = πα∂0Aα − L(Aα, ∂βAα)

as a function of Aα, ∂iAα, and the non-zero components of πα. Then express H as a
function of ~E and ~B to see whether the Hamiltonian density, H, is equal to the energy
density, T 00. If not (spoiler alert!), show that nevertheless their integrals give the
same total energy, if the fields fall off fast enough at infinity.


