
Chapter 2

Logic this week, incidence geometry next.

Axiomatic systems

(See “requirements” on pp. 10–11 and pp. 53–58 in Ch. 2.)

The old, naive view of mathematical rigor (seemingly implicit in Euclid):

1. Define all terms.

2. Deduce all statements from self-evident truths.

We have seen that these both lead to problems.

Deduction: We need two starting elements:

1. Axioms: “certain statements accepted without further justification”.

2. Rules of logical deduction: ways of passing from old statements to new ones.

From these, new statements (theorems) follow. Both are needed to avoid infinite regress.
Without the logic rules, the process would be stalled. Without the axioms, there would
be no place to start.

Rigorous axiomatization is usually applied to a mature subject, where there is already
some agreement on the basic facts. It is not so much a powerful way of discovering truth
as a way of organizing, systematizing, and applying quality control.

In the modern view, the axioms are usually not “self-evident”.

1. Sometimes the axioms are arbitrary assumptions, whose consequences we want to de-
duce, without necessarily caring about whether the statements are “true” of anything
in the “real world”. (Example: very abstract topics in pure algebra; the axioms are
part of the definition of a type of mathematical system.)

2. Sometimes, when we are seeking a theory of something, the verification is of the
structure as a whole. In the choice of axioms, power and simplicity are valued over
obviousness. (Examples: set theory; theoretical physics.)

Terms: Euclid notoriously started with these definitions:

1. A point is that which has no part. (??)

2. A line is breadthless length.

3. The extremities of a line are points. (What does this define?? Heath does not em-
phasize any word.)
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4. A straight line is a line which lies evenly with the points on itself. (??)

. . .

12. An acute angle is an angle less than a right angle. (That’s more like it!)

Again we must avoid an infinite regress by allowing another starting element:

0. Primitive (undefinable) terms.

Just as a logical deduction produces new theorems from old, a definition produces
new terms from old. One can look at that in two ways:

Abbreviation: We just want to make statements shorter.

Explication: By careful thought, we determine what we really mean by terms we
may have been using informally already.

Similarly, a theorem has two functions:

Proof: We believe the statement if we believe the assumptions.

Explanation: We already thought the statement was true, but now we feel we know
why, because it fits into the system. (This is the “retail” version of “verifying the
structure as a whole”.)

Quantifiers

∀x means “For all x”:

∀x [x < x + x2 + 1] (real numbers understood)

is a true statement. ∃x means “There exists an x such that,” as in

∃x [x is rotten in Denmark].

∀x and ∃x are called universal and existential quantifiers, respectively.

Expressions such as

x < x + x2 + 1 and x is rotten in Denmark

(which contain a variable and would be sentences if the variable were replaced by a mean-
ingful name or noun) are called open sentences. They are just like functions or formulas in
algebra and calculus, except that the value of such a function, when something particular
is plugged in for x, is not a number, but rather a truth value — either True or False (or
either “Yes” or “No”).
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A quantifier, ∀x or ∃x, closes off an open sentence and turns it into a genuine sentence,
which is either true or false (although we may not know which). Quantifiers are very much
like the definite integral and limit notations in calculus, which turn formulas into numbers:

∫ 1

0

x2 dx and lim
x→2

x2

are particular numbers, even though the expressions representing them involve a vari-
able, x. In calculus such a variable is often called a “dummy variable”; in logic it’s
traditionally called a “bound variable” (because it’s tied to its quantifier).

The quantified variable stands for objects in some “universe of discourse”, which may
be either stated explicitly —

∀x [if x is a real number, then x < x + x2 + 1]

— or understood from context. The universe of discourse is just like the “domain” of a
numerical function.

Leading universal quantifiers are often omitted when we state “identities” in mathe-
matics, such as

x + y = y + x and (n + 1)! = (n + 1)n! .

[What universe of discourse is understood from context in each of these cases?]

If two or more quantifiers of the same type are adjacent, their order doesn’t matter:

∀x∀y [x + y < y + x + 1] and ∀y∀x [x + y < y + x + 1]

say exactly the same thing.

However, the order of quantifiers of different type is extremely important. (This is the
place where this discussion gets beyond the obvious into something both important and
subtle.) Consider, for example, the old saying

Behind every successful man there is a woman.

The structure of this proposition (whether or not you believe it to be true or false) is

∀x∃y [if x is a man and x is successful, then y is a woman and y is behind x].

But

∃y∀x [if x is a man and x is successful, then y is a woman and y is behind x]

says something completely different: There is one particular woman who stands behind
every successful man in the world! (There may be more than one, but each one of them
deals with all the men.)
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It is notorious that this point is important for the ǫ and δ in the definition of a limit,

The function f is continuous if, for every x in the domain of f ,

for every number ǫ > 0 there is a number δ > 0 such that for any

number y in the domain, if |y − x| < δ, then |f(y)− f(x)| < ǫ. (1)

which has this structure:

∀x∀ǫ∃δ∀y [if |y − x| < δ, then |f(y)− f(x)| < ǫ] (1′)

(with qualifications such as “number” and “in the domain” suppressed). For example, look
at this slight variation of (1):

For every x in the domain of f , there is a number δ > 0 such

that for every number ǫ > 0 and every number y in the domain,

if |y − x| < δ, then |f(y)− f(x)| < ǫ. (2)

Its structure is
∀x∃δ∀ǫ∀y [if |y − x| < δ, then |f(y)− f(x)| < ǫ], (2′)

and it is false unless f is a constant function! For a nontrivial f , one has to know ǫ before
one can choose the right δ. There is not (usually) one δ that works for every ǫ. Similarly,
if we move the universal quantifier ∀x in (1) after the existential quantifier ∃δ, we get a
different condition:

For every number ǫ > 0 there is a number δ > 0 such that for every

x and y in the domain of f , if |y− x| < δ, then |f(y)− f(x)| < ǫ. (3)

∀ǫ∃δ∀x∀y [if |y − x| < δ, then |f(y)− f(x)| < ǫ]. (3′)

Although this condition is simpler to state in English than the one in the definition (1), it
is harder for the function f to satisfy, because it requires that the same δ work for all x.
For example, the function f(x) = 1/x is continuous on the domain (0,∞), but it does not
satisfy (3) because its graph becomes increasingly steep as x approaches 0. A function
that does satisfy (3) is called uniformly continuous. Uniform continuity is an important
condition in more advanced mathematics, but we are interested in it today only as an
example of the need to keep track of the order of quantifiers. (By the way, Augustin-Louis
Cauchy, who did as much as anyone to invent the concept of a limit, seems to have been
confused on this point for at least 26 years, so students shouldn’t expect to find it easy on
the first exposure.)

If two quantifiers of one type are separated by one (or more) of the other type, then
they cannot be reversed:

∃x∀y∃z is not equivalent to ∃z∀y∃x;

“There is a country where behind every man there is a woman” is not equivalent to “There
is a woman such that for every man there a country where she stands behind him.”
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Propositional calculus (the logical connectives)

Letters p, q, . . . are used as variables standing for statements or for open sentences
(sentences containing variables). In the latter case, the variable is sometimes made explicit
by writing something like p(x). (For example, we can let p, or p(n), stand for “n is a perfect
square” — i.e.,

∃m [n = m2]

— and q for “n is an even number.” To discuss p in the context of quantifiers, we would
write ∃n p(n), etc., or even ∃n∃mr(n, m) to display the entire structure.) The second major
part of logical notation expresses how simple sentences are combined into compound ones.
The easiest of these to understand simply translate the English words “and”, “or”, and
“not”.

AND: p ∧ q (n is a square and also is even.)

OR: p ∨ q (Either n is a square, or it is even (possibly both).)

NOT: ¬p (n is not a perfect square.)

Note that ¬¬p simplifies to p. Also, it is easy to see that ∧ and ∨ are commutative and
associative operations, so we can write things like p ∧ q ∧ r instead of p ∧ (q ∧ r) and
(p ∧ r) ∧ q. Furthermore, each of them is distributive over the other:

p ∧ (q ∨ r) is equivalent to (p ∧ q) ∨ (p ∧ r), (4a)

p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r). (4b)

(We shall prove one of these with truth tables in a moment.)

Truth tables

It is convenient and standard to let 1 represent “True” or “Yes” and 0 represent
“False” or “No”.

Each connective can be precisely defined by telling what its truth value is for each
possible truth value of its parts. This information can be presented in truth tables similar
to addition and multiplication tables in arithmetic:

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1
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From these the truth tables of more complicated sentences can be deduced. For
example, let’s establish the distributive law (4a). We list all 8 possible cases:

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

From the fifth and eighth columns of this table, we see that the two sides of (4a) are
true in exactly the same cases (the last 3); therefore, replacing one side by the other is a
universally valid principle of logical reasoning.

De Morgan’s laws

Two other logical identities that can be verified by truth tables are De Morgan’s laws,

¬(p ∧ q) is equivalent to ¬p ∨ ¬q, (5a)

¬(p ∨ q) is equivalent to ¬p ∧ ¬q. (5b)

Let’s look now at what happens when we try to prove an identity that turns out to be
incorrect. Suppose we conjectured that

¬(p ∧ q) is equivalent to ¬p ∧ ¬q.

We work out the corresponding truth table:

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∧ ¬q
0 0 0 1 1 1 1
0 1 0 1 1 0 0
1 0 0 1 0 1 0
1 1 1 0 0 0 0

The fourth and seventh columns do not match up, so the conjecture was wrong.

Closely related to De Morgan’s laws are these laws for quantifiers:

¬∀x [. . .] is equivalent to ∃x¬[. . .], (6a)

¬∃x [. . .] is equivalent to ∀x¬[. . .]. (6b)
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Note that for a finite universe, quantifiers are unnecessary — they can be rewritten in
terms of connectives! If the universe has only 3 elements, say a, b, c, then

∀x p(x) is equivalent to p(a) ∧ p(b) ∧ p(c),

∃x p(x) is equivalent to p(a) ∨ p(b) ∨ p(c).

Then the action (6) of ¬ on quantifiers follows from DeMorgan’s laws (5).

Both of these sets of laws are especially nice when there are negations on both sides:

¬(¬p ∧ ¬q) simplifies to p ∨ q,

¬∀x¬p(x) simplifies to ∃x p(x),

etc.

Connectives expressing logical equivalence and implication

We consider two more extremely important logical connectives:

IFF: p q p ←→ q

0 0 1
0 1 0
1 0 0
1 1 1

ONLY IF: p q p → q

0 0 1
0 1 1
1 0 0
1 1 1

(“p ONLY IF q” is the same as “q IF p”.)

Remarks:

1. p ←→ q says that p and q have the same truth value (either both true or both false).
Therefore, if we know one, we can conclude the other. The distributive law (4a) can
be expressed totally in symbolic notation as

p ∧ (q ∨ r) ←→ (p ∧ q) ∨ (p ∧ r).

2. p → q is intended to symbolize that if we know that p is true, then we can conclude

that q is true. Note that the bottom half of its truth table guarantees this. With
the full set of logical notation, we can now write the structure of the definition of
continuity entirely in symbols:

[f is continuous] ←→ ∀x∀ǫ∃δ∀y [p(x, y, δ) → q(x, y, ǫ)]. (1′′)

3. The most common English rendering of p → q is

If p, then q, (7)
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One also says “p implies q.” It is sometimes said that the English counterpart of →
is IF, but this is not quite right, because the “if” in (7) comes before the p. Therefore,

p IF q

corresponds better to q ⇒ p than to p ⇒ q. However, if we say

p ONLY IF q,

then we do get something that means p → q; it says that if q is false, then p is false,
which is the contrapositive (see 8 below) of p → q.

4. p ←→ q is equivalent to (p → q) ∧ (q → p). Thus

p IF AND ONLY IF q

is an English way of saying p ←→ q. In fact, it is the standard way of express-
ing equivalent conditions (usually ∀x [p(x) ←→ q(x)] statements) in mathematical
English. Often it is “blackboard abbreviated” to “IFF”.

5. p → q is equivalent to ¬p ∨ q. (By the way, like the minus sign in algebra, ¬
binds tightly to the propositional symbol it applies to (“has highest precedence”); for
example, ¬p ∨ q means (¬p) ∨ q, not ¬(p ∨ q).)

6. The connective → is slightly subtle conceptually. Right now you may be wanting to
ask:

A. What is the justification for the top half of the table? Does it make sense to say,
“If 2 + 2 = 5, then sinx is a continuous function,” or “If 2 + 2 = 5, then sinx is
not a continuous function.”?

B. Does it make sense to say, “If China is in Asia, then sin x is a continuous function,”
when the two statements obviously have no connection with each other?

The answer to question A is that we want p → q to be meaningful and useful when p
and q are open sentences — in particular, when they are inside quantified sentences,
such as

∀x
[

If |x| < π

4
, then | sinx| < 1√

2
.

]

This is a true and useful theorem. It does what we want of a theorem: Whenever a
number is less than π

4
in magnitude, it enables us to conclude (correctly) that its sine

is less than 1√
2

. However, there are other numbers, such as x = π

2
, for which both

the hypothesis and the conclusion are false, and there are still other numbers, such as
x = π, for which the hypothesis is false but the conclusion is true. We must demand
that these cases be consistent with the theorem, and the connective → is defined to
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make this so. If we changed the top two lines of the truth table, or left them undefined,
then the theorem would become false, or indeterminate, for some of these cases. This
would make the formulation of mathematical statements very cumbersome.

The resolution of point B is similar. Propositional calculus is concerned only with the
truth values of sentences, not with what they mean. There are only 2 truth values,
Yes and No. In this sense all true sentences are the same, and all false ones are the
same, just as all numbers 9 are the same, regardless of what things you counted to
get the number 9. Therefore, to say

If China is in Asia, then sinx is a continuous function. (8)

is no more strange than to say

The number of planets in the solar system is less than the number

of states in the Union. (9)

There is no scientific law that makes (9) true; it is simply a fact. The same goes
for (8).

7. If p ⇒ q, or ∀x [p(x) → q(x)], then one says

p is a sufficient condition for q

and
q is a necessary condition for p

(that is, if q is false, then p can’t be true). Therefore, if p is both necessary and
sufficient for q, then p ⇐⇒ q or ∀x [p(x) ←→ q(x)].

8. Associated with p → q are 3 closely related propositions:

contrapositive: ¬q ⇒ ¬p
converse: q ⇒ p
inverse: ¬p ⇒ ¬q

The original statement and its contrapositive are logically equivalent. The converse
and the inverse are equivalent, because the inverse is the contrapositive of the converse.
But the original and the converse are not logically equivalent (although they may both
be true under certain circumstances).

Example of 7 and 8: Another bugaboo of the calculus student is infinite series,
∑∞

n=0
an . Let p stand for

an → 0 as n→∞,

and q stand for

The series

∞
∑

n=0

an converges.
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Then q implies p (Stewart, Sec. 10.2, Theorem 6), but p does not imply q (because the
harmonic series, for instance, is a counterexample: Stewart Sec. 10.2, Example 7). Thus

(A) Tending of the terms to 0 is a necessary condition for convergence, but not a suffi-

cient condition. (In contrast, most of the series convergence theorems state sufficient

conditions (e.g., the alternating series test (Stewart, Sec. 10.4) and the ratio test
(Sec. 10.3).)

(B) p → q is false for the harmonic series, but its converse, q → p, is true. (Of course,
p → q is true of all series that happen to be convergent.) If we attach a universal
quantifier over all series, a ≡ {an}, then the result

∀a [p(a) → q(a)]

is false, but

∀a [q(a) → p(a)]

is true.

Various logical techniques

Modus ponens and universal specification are the basic rules of deduction:

From p ⇒ q and p you can conclude q.

From ∀x p(x) you can conclude p(a) (where a is the name of some particular thing in
the universe of discourse).

Existential generalization: From p(a) you can conclude ∃x p(x).

Reasoning by cases and by reductio ad absurdum require introducing temporary as-
sumptions, which in Greenberg’s style of proof writing would be labeled “by hypothesis”
[item (1) of Logic Rule 1 (p. 56)]. Eventually one closes off this subdeduction by reaching
either a contradiction (refuting the hypothesis) or the desired conclusion (so that you can
turn to considering the next case).

Similarly, if you have assumed p and consequently exhibited a proof of q, then you
can conclude p ⇒ q. This is a deduction converse to modus ponens. The universal
and existential rules also have converse procedures, but it can be treacherous to use them
together: see Part 2 of my logic notes. These last two techniques involve temporarily giving
a name to a variable that ultimately belongs inside a quantifier, so that the intermediate
steps can be carried out without writing lots of quantifiers.

Substitution rule (p. 66): If a = b and p(a) is a theorem, then p(b) is a theorem.
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Incidence geometry (Follow pp. 69–71)

Undefined terms: point; line; incidence (P I l, stated as “P lies on l” or “l passes
through P”).

Axioms I-1–I-3, in verbal and symbolic versions (p. 70 and p. 69). Write verbal forms
with “nop” and “nil” for “point” and “line”.

Defined terms: collinear; concurrent; parallel (write out “parallel” symbolically

l 6= m ∧ ¬∃P (P I l ∧ P I m)

and note that one clause is redundant by I-2). [Might want to mention parallelism prop-
erties here.]

Proposition 2.1: ∀l∀m[
(

l 6= m ∧ ¬(l‖m)
)

⇒ ∃!P (P I l ∧ P I m)]

Informal argument: Suppose to the contrary that l and m have two (or more) nops
in common, P and Q. By I-1, there is a unique nil through P and Q. Then l and m must
be the same nil.

Symbolic proof: Expand the hypothesis:

l 6= m ∧ ∃P (P I l ∧ P I m). [3][1]

Expand the conclusion:

∃P [P I l ∧ P I m ∧ ∀Q(Q I l ∧Q I m ⇒ Q = P )].

(If the P in the hypothesis can be used as the P in the conclusion, we are half done!)
Expand I-1:

P 6= Q ⇒ ∃l[P I l ∧Q I l ∧ ∀m(P I m ∧Q I m ⇒ m = l)].

Assume we have another Q: Q I l ∧Q I m [2a]; try to prove Q = P. Assume P 6= Q [2b];
then by I-1

∃n[P I n ∧Q I n ∧ ∀k(P I k ∧Q I k ⇒ k = n)]. [4]

But we know P I l (main hyp) and Q I l (midlevel hyp); so l = n. Similarly, m = n. So
l = m. But l 6= m (main hyp); so the inner hyp, P 6= Q, is false; so P = Q (given the
midlevel hypothesis). That is, we have proved for arbitrary Q that

Q I l ∧Q I m ⇒ Q = P. [5]

That finishes the proof of the conclusion.

Now compare with the author’s semiformal proof on p. 58. There are some minor
differences, but we can identify each of our steps with his (bracketed numbers). I tend
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to write justifications before statements (to expound strategy). On homework for Prop.
2.2–5, write either a Greenberg-style formal proof or a symbolic proof, whichever you find
easier.

Discuss 2.3 and “useful lemma” below in class. (Beware of prematurely identifying
the points and lines in I-3 with those in the proposition.) Note: RAA is more useful for
discovering proofs than for writing proofs.

Useful lemma: For every point P, there exist two other points that are not collinear
with P. (Propositions 2.4 and 2.5 will quickly follow.)

Parallelism properties

These definitions (crucial for Exercise 2.9) are hidden in the section “Models”.

Elliptic: No parallel lines exist, ever!

Euclidean: ∀l∀P not on l there is a unique line m through P parallel to l.

Hyperbolic: ∀l∀P not on l there exist many lines (at least 2) through P parallel to l.

IMPORTANT: It is possible that none of the three holds. There could be one
line and point with a unique parallel and another line and point with many parallels, for
instance.

Finite models of incidence geometry

Fig. 2.4: 3 points, 3 lines; elliptic. [Replace lines by Venn ellipses; label points and
lines.] (“the triangle”)

Fig. 2.5: 4 points, 6 lines; Euclidean. (“the tetrahedron”)

Fig. 2.6: 5 points, 10 lines; hyperbolic. (Note that the two dotted lines in back may
not intersect, and even if they do, that point is not one of the points of the geometry.)

Dual interpretation of Fig. 2.4: nils = points, nops = lines. [Relabel things consis-
tently.] Can’t do that with nonelliptic models. Elliptic models are self-dual because of
these correspondences, which make the statements symmetrical in “points” and “lines”:

I-1 ↔ elliptic ‖ ∧ 2.1

I-2 ↔ 2.5

I-3 ↔ 2.2

2.3 ↔ 2.4
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Philosophical significance of models

We assume our intuition about finite sets of points is correct; therefore, verifying the
axioms in a finite model shows that the axioms are consistent. We assume that the laws
of logic are correct; therefore, the theorems are true in each model. Moreover, we have
shown that each of the three ‖ properties is consistent with the axioms; therefore, none

of the ‖ properties can be proved from the I axioms, since then it would be true in all
the models! (This doesn’t settle the original Euclidean ‖ debate, because that concerned
Euclid’s axioms, not the I axioms.)

Remarks on the 3 paragraphs of the “Consistency” section (pp. 76–77):

1. In an inconsistent system, all statements are provable: (p ∧ ¬p) ⇒ q is a tautology,
by truth tables.

2. This paragraph strikes me as circular and unnecessary. [debate]

3. This one is correct and important.

A quick tour of projective and affine spaces

Definition: An affine plane is an incidence geometry with the Euclidean ‖ property.

Definition: A projective plane is an incidence geometry with the elliptic ‖ property,
and such that every line goes through at least 3 points.

So the “tetrahedron” is an affine plane, but the “triangle” is not a projective plane,
because it doesn’t have enough points.

Theorem: Any affine plane can be extended to a projective plane by adding points

at infinity and a line at infinity. “Parallel lines are declared to meet at infinity.” See pp.
82–84 for details.

The projective completion of the tetrahedron is the smallest projective plane, the Fano

plane, with 7 points and 7 lines (Fig. 2.8).

Projective planes are self-dual.

The real (infinite!) projective plane

1. The ordinary Euclidean plane is affine, and its projective completion is (topologically)
a sphere with antipodes identified (Fig. 2.9, Example 7).

2. Let F be a field. (Think of F = R.) Then the vector space F2 is an affine plane whose
lines are the loci ax + by = c (“affine subspaces” in linear algebra). The projective
plane P2(F) can be identified as the set of all lines through the origin in F3. Those
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are the nops; the nils are the loci ax + by + cz = 0. Note that





x
y
z



 ≃





λx
λy
λz



 and similarly for ( a b c ) .

Self-duality is clear. (Note: Lines through the origin are in 1–1 correspondence with
points on the unit sphere, antipodally identified.)

If F is the finite field of two elements, {0, 1}, then F2 is the tetrahedron and P2(F) is
the Fano plane (Major Exercise 5).
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