
Chapters 5 and 6

I won’t repeat most of the history. That doesn’t mean it’s unimportant, only that I
don’t have anything to add.

The hyperboloidal model

Pp. 248–249: “A model of hyperbolic plane geometry is a sphere of imaginary radius
with antipodal points identified in the three-dimensional spacetime of special relativity.”
This is better explained on pp. 311–313. I will come back to it later.

Results in non-Euclidean Hilbert geometry (pp. 250ff)

Negation of HE: ∃ a line l and a P not on l such that at least two distinct lines
through P are ‖ to l.

Def.: A Hilbert plane satisfying this is non-Euclidean.

Basic Theorem 6.1: A non-Euclidean Hilbert plane satisfying Aristotle’s axiom
satisfies the acute angle hypothesis (and hence a list of things we proved in the last chapter).

Remark: Recall that “rectangles do not exist” is a quick way of saying that either the
acute angle hypothesis or the obtuse angle hypothesis holds. (See p. 182.)

Universal Non-Euclidean Theorem and Corollary: In a Hilbert plane in which
rectangles do not exist, for every l and every P not on l there are at least 2 parallels to l

through P (and hence infinitely many).

Def.: The defect of a triangle is the amount by which the three angles fail to total
180◦.

Prop. 6.1: If a triangle is divided into 2 triangles, its defect is the sum of the defects
of the parts.

Remark: In Chap. 10 it is proved that the area of a triangle is proportional to its
defect. (The constant of proportionality is fixed by the scale factor of the hyperbolic
geometry — the “radius” R of the hyperboloid in the model described above.) It follows
that in any particular hyperbolic geometry there is an upper limit on the area of triangles,
since the defect can’t be more than 180◦. The next proposition shows how this can be
true, even though segments can be arbitrarily long:

Prop. 6.2: Acute hyp. ⇒ if two triangles are similar, then they are congruent.
(AAA is true!) [sketch]

Related remark: HE ⇐⇒ Wallis’s Axiom: Given any segment and any triangle,
there is a similar triangle built on that segment.
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Prop. 6.3: In a plane in which rectangles do not exist, parallel lines are not equidis-
tant. In fact, any set of point on l equidistant from l′ contains at most two points.

Related remark: semi-Euclidean ⇐⇒ Clavius’s Axiom: The parallel through P is
the equidistant locus through P (both relative to a line l).

Remark: “I hope the reader is not too shocked to see line l drawn as being ‘curved’ !”
This should not be a shock to those who have drawn meridians on a sphere. [2 sketches]

Limiting parallel rays

See Fig. 6.10 (p. 258), and Fig. 6/14 (p. 264), and Figs. 7.9–10 (p. 304). Given l

and P, some lines through P (those closest to the perpendicular) intersect l, others do not.
Is there a boundary case between those that do and those that don’t? Under sufficient
continuity axioms, it can be proved that a boundary ray does exist and it does not intersect.
In other words, there is a first ray that fails to meet l. Cf. least upper bound vs. maximum,
and the possible nonexistence of either if R is replaced by Q. (Greenberg’s theorem uses
Aristotle and line-circle; Dedekind would do for both.)

Hilbert made this property another axiom:

Hilbert’s Hyperbolic Axiom of Parallels: ∀ l, P, a limiting parallel ray exists,
and it is not ⊥ to the ⊥ from P to l.

Definitions: A Hilbert plane obeying this axiom is a hyperbolic plane. A non-
Euclidean plane satisfying Dedekind’s axiom is a real hyperbolic plane.

real hyperbolic ⇒ hyperbolic ⇒ non-Euclidean

Corollaries: A Hilbert plane satisfying Dedekind’s axiom is either real Euclidean or
real hyperbolic. A Hilbert plane satisfying Aristotle’s axiom and line-circle continuity is
either Euclidean or hyperbolic.

Theorem 6.3: In a hyperbolic plane, if m is ‖ to l, then either m contains a limiting
parallel ray in one direction or the other, or there is a (unique) common ⊥ to l and m (but
not both). (See Fig. 6.14, p. 264.)

Prop. 6.6: The angle between the perpendicular and the limiting ray is acute and
is the same on both sides. (Its measure is called the angle of parallelism associated with
that ⊥ segment.)

Dehn’s models

[Table from Dehn’s 1900 paper (table translated by G. B. Halsted)]

30



This situation makes necessary the complicated statement of hypotheses in the theorems
about Saccheri–Lambert quadrilaterals.

See pp. 188-189 and 250, especially footnote on p. 189. My attempt to elaborate:
(These remarks should be considered intuitive only.)

Start by noting that F2 and F3 model Euclidean 2D and 3D geometry (Theorem,
p. 141).

There are fields containing “infinitesimal” elements, say a, such that

na ≡
n∑

j=1

a < r for any r ∈ Q+.

(Thus Archimedes’s axiom fails for segments of such lengths.) The modern theory of
nonstandard analysis attempts (among other things) to vindicate pre-19th-century calculus
in this way (i.e., making equations like dy = dy

dx
dx literally true); it developed in the mid-

20th century, hence 50 years after Dehn, but Dehn already knew about non-Archimedean
fields. The apparent judgment of history is that calculus doesn’t need this: the rigorous
theory of limits is better. Q and K are too small; fields F with infinitesimals are two big;
R is just right.

Nevertheless, a rigorous theory of infinitesimals allows one to create models of non-
Legendrean and semi-Euclidean geometry. Let Π be the subset of F2 of points whose
coordinates are infinitesimal. Since you can’t get out of Π by adding elements of Π, the
Hilbert axioms are still satisfied, so Π is also a model for them. Also, it satifies the right
angle hypothesis because F2 does. However, two lines in F2 determined by pairs of points
in Π that intersect in a point not in Π count as parallel in Π. Therefore, there are lots
of parallels; HE/EV fails although the plane is semi-Euclidean (rectangles exist; triangles
add to 180◦).

Next, consider a sphere in F3. (This is not precisely Dehn’s construction, but seems
to be consistent with Greenberg’s footnote.) Consider an infinitesimal neighborhood of
a point on the sphere. For example, introduce polar coordinates (θ, φ) around the north
pole and restrict θ to infinitesimal values (getting a very tiny polar cap). Now most pairs
of great circles do not intersect inside the cap, so they are parallel. However, the fourth
angles of Lambert quads. inside the cap are obtuse (although only infinitesimally larger
than a right angle).
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