Midterm Test - Solutions

Name:

1. (10 pts.) All but two of the following propositions are theorems of Hilbert geometry (that is, they can be proved from the I, B, and C axioms without additional assumptions). Identify the two statements that don't belong.
(A) If $\mathrm{A} * \mathrm{~B} * \mathrm{C}$, then B is the only point common to rays $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{BC}}$.
(B) If A lies on the line l and B does not, then every point of $\overrightarrow{\mathrm{AB}}$ except A is on the same side of l as B.
(C) If D lies in the interior of angle $<) \mathrm{BAC}$, then there exist points E on $\overrightarrow{\mathrm{AB}}$ and F on $\overrightarrow{\mathrm{AC}}$ such that $\mathrm{E} * \mathrm{D} * \mathrm{~F}$.
(D) If $\overrightarrow{A D}$ is between $\overrightarrow{A C}$ and $\overrightarrow{A B}$, then $\overrightarrow{A D}$ intersects segment $B C$.
(E) If a ray r emanating from an exterior point of triangle $A B C$ intersects side $A B$ in a point between A and B , then r also intersects side AC or side BC .
(F) If a ray r emanates from an interior point of triangle ABC , then r intersects exactly one of the sides of that triangle.
C and F don't belong.
C is not a theorem of Hilbert geometry and is false in hyperbolic geometry; see "Warning", p. 115.
F is false; the correct statement is Prop. 3.9(b).
A is part of Prop. 3.6; B is the oft-used lemma Exercise 3.9; D is the crossbar theorem; E is Prop. 3.9(a).
2. (10 pts.) Explain why $\forall x[x$ glitters $\Rightarrow \neg(x$ is gold $)]$ is not a correct translation of "All that glitters is not gold." Provide a correct translation.
The intended meaning of the English sentence is, "It is not true that everything that glitters is gold." That is,

$$
\neg \forall x[x \text { glitters } \Rightarrow x \text { is gold }] .
$$

By standard logic rules this formula can be converted to

$$
\exists x \neg[\neg(x \text { glitters }) \vee x \text { is gold }]
$$

and hence to

$$
\exists x[x \text { glitters } \wedge \neg(x \text { is gold })]
$$

(which many students wrote down immediately by common-sense reasoning). Any of these three is correct.
3. (20 pts.) Recall the three incidence axioms (two expressed in logical symbols to save space):

1. $\forall \mathrm{P} \forall \mathrm{Q}[(\mathrm{P} \neq \mathrm{Q}) \Rightarrow \exists!l(\mathrm{P} \mathrm{I} l \wedge \mathrm{Q} \mathrm{I} l)]$
2. $\forall l \exists \mathrm{P} \exists \mathrm{Q}[\mathrm{P} \neq \mathrm{Q} \wedge(\mathrm{P} \mathrm{I} l \wedge \mathrm{Q} \mathrm{I} l)]$
3. There exist 3 distinct points that are not collinear.

Consider the geometry consisting of 6 points, where the lines are the two-element subsets.
(a) Verify that the incidence axioms are satisfied. (Discuss each axiom in English, not logical symbolism.)
Since all lines are 2 -element sets, I-2 is obviously true (every line contains (at least) 2 points). I-1 is true because $\{\mathrm{P}, \mathrm{Q}\}$ contains P and Q and is the only 2 -element set containing both of them. Finally, since each line has only 2 points, and there are more than 2 points in the space, there must be points that are not on the same line.
(b) What parallelism property (if any) does this model satisfy?
hyperbolic. (There are 4 lines parallel to any given line.)
4-6. (each 20 pts.) Do THREE of these: (no more than 10 points extra credit for doing all 4)
(A) State the four betweenness axioms.

See pp. 108 and 110-111.
(B) Prove the ASA triangle congruence theorem, fully justifying all steps.

See pp. 127 and 151-152.
(C) Define an equivalence relation and list 3 examples of equivalence relations closely related to the Hilbert axioms.
Am equivalence relation " \simeq " is a binary relation (i.e., relation between two things) that is (universal quantifiers implied)
(1) reflexive: $x \simeq x$
(2) symmetric: $x \simeq y \Rightarrow y \simeq x$
(3) transitive: $x \simeq y \wedge y \simeq z \Rightarrow x \simeq z$

The 3 examples I had in mind were

1. congruence of segments
2. congruence of angles
3. being on "the same side" of a line

Other possibilities include
4. congruence of triangles
5. equality
"Betweenness" does not qualify, because it is a relation among three things.
(D) State and prove Pasch's Theorem.

See p. 114.
(Answer on separate paper; put your name on it and staple it to your test.)

