A proof of Prop. 3.8(c)

(by S.A.F. with a little bit of help from the Instructor's Manual)
By definition of "interior", B and D are on the same side of $\overleftrightarrow{A C}$, which is the same as $\overleftrightarrow{\mathrm{AE}}$. We must show that also B and E are on the same side of $\overleftrightarrow{\mathrm{AD}}$. If they are not, then segment BE intersects either $\overrightarrow{\mathrm{AD}}$ or $\overrightarrow{\mathrm{AF}}$ at a point $G \in \overrightarrow{\mathrm{BE}}$. Clearly $G \neq A$, since A, B, and C are not collinear. By Exercise 9 , therefore, G and E are on the same side of $\overleftrightarrow{A B}$, and G and B are on the same side of $\overleftrightarrow{A E}$.

Case 1: $G \in \overrightarrow{A D}$. By Exercise 9 again, G and D are on the same side of $\overleftrightarrow{A B}$. So E and D are on the same side of that line by B-4. But D and C are on the same side, by the other half of the definition of interior of $\angle \mathrm{CAB}$. So E and C are on the same side, which contradicts the construction of E .

Case 2: $\mathrm{G} \in \overrightarrow{\mathrm{AF}}$. By Exercise 9 once more, G and F are on the same side of $\overleftrightarrow{A C}$. In the proof of (b) we saw that F and B are on opposite sides of $\overleftrightarrow{\mathrm{AC}}$. Therefore, B and G are on opposite sides of $\overleftrightarrow{A C}$. This contradicts our previous conclusion that B and G are on the same side of $\overleftrightarrow{A E}$.

