Group work: MU [with corrections by SAF]
October 6, 2010.
Q: 12 page 148
Prove proposition 3.9 (Hint: For proposition 3.9 (a), use Pasch's theorem and proposition 3.7; see figure 3.37 . For proposition 3.9 (b) let the ray emanate from point D in the interior of triangle ABC . Use the crossbar theorem and proposition 3.7 to show that ray AD meets BC in a point E such that A*D*E. Apply Pasch's theorem to Triangle ABE and triangle AEC: see figure 3.38.) Proposition 3.9:
a) If a ray r emanating from an exterior point of triangle $A B C$ intersects side $A B$ in a point between A and B, then r also intersects side $A C$ or side $B C$.
b) If a ray emanates from an interior point of triangle ABC , then it intersects one of the sides, and if it does not pass through a vertex it intersects only one side.

Prop. 3.9 (a)
Proof:

1. Pasch's theorem guarantees that the line containing the ray r (that is, the line XD in the figure) intersects either AC or BC . (see figure 3.37 in the text, but note that X could be on the far side of the triangle from D).
2. Assume, for example, that the line XD intersects AC at point E
3. We want to show that E is in the ray XD ; that is, $\neg \mathrm{E} * \mathrm{X} * \mathrm{D}$ (B-3 and definition of a ray).
4. Since every point between D and E is interior to triangle ABC (Prop. 3.7) but X is not, then, as we were hoping for, $\neg \mathrm{E} * \mathrm{X} * \mathrm{D}$ (definition of exterior of triangle).
5. Therefore, r intersects side AC .

Prop. 3.9(b)
Proof:

1. Let the ray emanate from point D in the interior of triangle ABC . (see figure 3.38 in the text)
2. By the crossbar theorem ray AD intersects BC at a point, say E .
3. By Proposition 3.7 we have A * D * E.
4. By Pasch's theorem applied to triangle ABE and ACE the line through D containing the given ray r will meet either AB or BE at F and either AC or CE at G.
5. Proposition 3.7 ensures that $\mathrm{F}^{*} \mathrm{D} * \mathrm{G}$, so the given ray contains exactly one of F and G.
