
Chapter 2

Logic this week, incidence geometry next.

Axiomatic systems

(See “requirements” on pp. 10–11 and pp. 53–58 in Ch. 2.)

The old, naive view of mathematical rigor (seemingly implicit in Euclid):

1. Define all terms.

2. Deduce all statements from self-evident truths.

We have seen that these both lead to problems.

Deduction: We need two starting elements:

1. Axioms: “certain statements accepted without further justification”.

2. Rules of logical deduction: ways of passing from old statements to new ones.

From these, new statements (theorems) follow. Both are needed to avoid infinite
regress. Without the logic rules, the process would be stalled. Without the axioms,
there would be no place to start.

Rigorous axiomatization is usually applied to a mature subject, where there
is already some agreement on the basic facts. It is not so much a powerful way
of discovering truth as a way of organizing, systematizing, and applying quality
control.

In the modern view, the axioms are usually not “self-evident”.

1. Sometimes the axioms are arbitrary assumptions, whose consequences we want
to deduce, without necessarily caring about whether the statements are “true”
of anything in the “real world”. (Example: very abstract topics in pure algebra;
the axioms are part of the definition of a type of mathematical system.)

2. Sometimes, when we are seeking a theory of something, the verification is of
the structure as a whole. In the choice of axioms, power and simplicity are
valued over obviousness. (Examples: set theory; theoretical physics.)

Terms: Euclid notoriously started with these definitions:

1. A point is that which has no part. (??)
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2. A line is breadthless length.

3. The extremities of a line are points. (What does this define?? Heath does not
emphasize any word.)

4. A straight line is a line which lies evenly with the points on itself. (??)

. . .

12. An acute angle is an angle less than a right angle. (That’s more like it!)

Again we must avoid an infinite regress by allowing another starting element:

0. Primitive (undefinable) terms.

This is the analogue of 1 (the axioms). The analogue of 2 (the rules of deduction)
is the grammar of the language, the ways in which terms can be combined to form
new terms or sentences.

Just as a logical deduction produces new theorems from old, a definition pro-
duces new terms from old. One can look at that in two ways:

Abbreviation: We just want to make statements shorter.

Explication: By careful thought, we determine what we really mean by terms
we may have been using informally already. (An example is our development
of a definition for “vertical angles” in Ex. 4.)

Similarly, a theorem has two functions:

Proof: We believe the statement if we believe the assumptions.

Explanation: We already thought the statement was true, but now we feel
we know why, because it fits into the system. (This is the “retail” version of
“verifying the structure as a whole”.)

Quantifiers

∀x means “For all x”:

∀x [x < x + x2 + 1] (real numbers understood)

is a true statement. ∃x means “There exists an x such that,” as in

∃x [x is rotten in Denmark].
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∀x and ∃x are called universal and existential quantifiers, respectively.

Expressions such as

x < x + x2 + 1 and x is rotten in Denmark

(which contain a variable and would be sentences if the variable were replaced by a
meaningful name or noun) are called open sentences. They are just like functions

or formulas in algebra and calculus, except that the value of such a function, when
something particular is plugged in for x, is not a number, but rather a truth value

— either True or False (or either “Yes” or “No”).

A quantifier, ∀x or ∃x, closes off an open sentence and turns it into a genuine
sentence, which is either true or false (although we may not know which). Quanti-
fiers are very much like the definite integral and limit notations in calculus, which
turn formulas into numbers:

∫

1

0

x2 dx and lim
x→2

x2

are particular numbers, even though the expressions representing them involve a
variable, x. In calculus such a variable is often called a “dummy variable”; in logic
it’s traditionally called a “bound variable” (because it’s tied to its quantifier).

The quantified variable stands for objects in some “universe of discourse”, which
may be either stated explicitly —

∀x [if x is a real number, then x < x + x2 + 1]

— or understood from context. The universe of discourse is just like the “domain”
of a numerical function.

Leading universal quantifiers are often omitted when we state “identities” in
mathematics, such as

x + y = y + x and (n + 1)! = (n + 1)n! .

[What universe of discourse is understood from context in each of these cases?]

If two or more quantifiers of the same type are adjacent, their order doesn’t
matter:

∀x∀y [x + y < y + x + 1] and ∀y∀x [x + y < y + x + 1]

say exactly the same thing.
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However, the order of quantifiers of different type is extremely important. (This
is the place where this discussion gets beyond the obvious into something both
important and subtle.) Consider, for example, the old saying

Behind every successful man there is a woman.

The structure of this proposition (whether or not you believe it to be true or false)
is

∀x∃y [if x is a man and x is successful, then y is a woman and y is behind x].

But

∃y∀x [if x is a man and x is successful, then y is a woman and y is behind x]

says something completely different: There is one particular woman who stands
behind every successful man in the world! (There may be more than one, but each
one of them deals with all the men.)

It is notorious that this point is important for the ǫ and δ in the definition of
continuity (construed here to incorporate the definition of a limit),

The function f is continuous if, for every x in the domain

of f , for every number ǫ > 0 there is a number δ > 0 such

that for any number y in the domain, if |y − x| < δ, then

|f(y)− f(x)| < ǫ. (1)

It has this structure:

∀x∀ǫ∃δ∀y [if |y − x| < δ, then |f(y) − f(x)| < ǫ] (1′)

(with qualifications such as “number” and “in the domain” suppressed). For exam-
ple, look at this slight variation of (1):

For every x in the domain of f , there is a number δ > 0

such that for every number ǫ > 0 and every number y in

the domain, if |y − x| < δ, then |f(y)− f(x)| < ǫ. (2)

Its structure is

∀x∃δ∀ǫ∀y [if |y − x| < δ, then |f(y) − f(x)| < ǫ], (2′)

and it is false unless f is a constant function!1 For a nontrivial f , one has to know
ǫ before one can choose the right δ. There is not (usually) one δ that works for

1 Technicality: (2′) might be true for a nonconstant function whose domain consists of
discrete points, such as the integers, or even a function whose domain consists of separated
intervals. For this example we have in mind the typical situation in calculus, where the
domain is a single interval of real numbers.

9



every ǫ. Similarly, if we move the universal quantifier ∀x in (1) after the existential
quantifier ∃δ, we get a different condition:

For every number ǫ > 0 there is a number δ > 0 such that

for every x and y in the domain of f , if |y − x| < δ, then

|f(y)− f(x)| < ǫ. (3)

∀ǫ∃δ∀x∀y [if |y − x| < δ, then |f(y) − f(x)| < ǫ]. (3′)

Although this condition is simpler to state in English than the one in the defini-
tion (1), it is harder for the function f to satisfy, because it requires that the same

δ work for all x. For example, the function f(x) = 1/x is continuous on the domain
(0,∞), but it does not satisfy (3) because its graph becomes increasingly steep as x
approaches 0. A function that does satisfy (3) is called uniformly continuous. Uni-
form continuity is an important condition in more advanced mathematics, but we
are interested in it today only as an example of the need to keep track of the order
of quantifiers. (By the way, Augustin-Louis Cauchy, who did as much as anyone to
invent the concept of a limit, seems to have been confused on this point for at least
26 years, so students shouldn’t expect to find it easy on the first exposure.)

If two quantifiers of one type are separated by one (or more) of the other type,
then they cannot be reversed:

∃x∀y∃z is not equivalent to ∃z∀y∃x;

“There is a country where behind every man there is a woman” is not equivalent
to “There is a woman such that for every man there a country where she stands
behind him.”

Propositional calculus (the logical connectives)

Letters p, q, . . . are used as variables standing for statements or for open sen-
tences (sentences containing variables). In the latter case, the variable is sometimes
made explicit by writing something like p(x). (For example, we can let p, or p(n),
stand for “n is a perfect square” — i.e.,

∃m [n = m2]

— and q for “n is an even number.” To discuss p in the context of quantifiers, we
would write ∃n p(n), etc., or even ∃n∃mr(n, m) to display the entire structure.) The
second major part of logical notation expresses how simple sentences are combined
into compound ones. The easiest of these to understand simply translate the English
words “and”, “or”, and “not”.
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AND: p ∧ q (n is a square and also is even.)

OR: p ∨ q (Either n is a square, or it is even (possibly both).)

NOT: ¬p (n is not a perfect square.)

Note that ¬¬p simplifies to p. Also, it is easy to see that ∧ and ∨ are commutative
and associative operations, so we can write things like p∧ q ∧ r instead of p∧ (q ∧ r)
and (p ∧ r) ∧ q. Furthermore, each of them is distributive over the other:

p ∧ (q ∨ r) is equivalent to (p ∧ q) ∨ (p ∧ r), (4a)

p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r). (4b)

(We shall prove one of these with truth tables in a moment.)

Truth tables

It is convenient and standard to let 1 represent “True” or “Yes” and 0 represent
“False” or “No”.

Each connective can be precisely defined by telling what its truth value is for
each possible truth value of its parts. This information can be presented in truth

tables similar to addition and multiplication tables in arithmetic:

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

From these the truth tables of more complicated sentences can be deduced.
For example, let’s establish the distributive law (4a). We list all 8 possible cases:

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

From the fifth and eighth columns of this table, we see that the two sides of (4a)
are true in exactly the same cases (the last 3); therefore, replacing one side by the
other is a universally valid principle of logical reasoning.
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De Morgan’s laws

Two other logical identities that can be verified by truth tables are De Morgan’s

laws,

¬(p ∧ q) is equivalent to ¬p ∨ ¬q, (5a)

¬(p ∨ q) is equivalent to ¬p ∧ ¬q. (5b)

Let’s look now at what happens when we try to prove an identity that turns out to
be incorrect. Suppose we conjectured that

¬(p ∧ q) is equivalent to ¬p ∧ ¬q.

We work out the corresponding truth table:

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∧ ¬q

0 0 0 1 1 1 1
0 1 0 1 1 0 0
1 0 0 1 0 1 0
1 1 1 0 0 0 0

The fourth and seventh columns do not match up, so the conjecture was wrong.

Closely related to De Morgan’s laws are these laws for quantifiers:

¬∀x [. . .] is equivalent to ∃x¬[. . .], (6a)

¬∃x [. . .] is equivalent to ∀x¬[. . .]. (6b)

Note that for a finite universe, quantifiers are unnecessary — they can be rewritten
in terms of connectives! If the universe has only 3 elements, say a, b, c, then

∀x p(x) is equivalent to p(a) ∧ p(b) ∧ p(c),

∃x p(x) is equivalent to p(a) ∨ p(b) ∨ p(c).

Then the action (6) of ¬ on quantifiers follows from DeMorgan’s laws (5).

Both of these sets of laws are especially nice when there are negations on both
sides:

¬(¬p ∧ ¬q) simplifies to p ∨ q,

¬∀x¬p(x) simplifies to ∃x p(x),

etc.
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Connectives expressing logical equivalence and implication

We consider two more extremely important logical connectives:

IFF: p q p ⇐⇒ q

0 0 1
0 1 0
1 0 0
1 1 1

ONLY IF: p q p ⇒ q

0 0 1
0 1 1
1 0 0
1 1 1

(“p ONLY IF q” is the same as “q IF p”.)

Remarks:

1. p ⇐⇒ q says that p and q have the same truth value (either both true or both
false). Therefore, if we know one, we can conclude the other. The distributive
law (4a) can be expressed totally in symbolic notation as

p ∧ (q ∨ r) ⇐⇒ (p ∧ q) ∨ (p ∧ r).

2. p ⇒ q is intended to symbolize that if we know that p is true, then we can

conclude that q is true. Note that the bottom half of its truth table guarantees
this. With the full set of logical notation, we can now write the structure of
the definition of continuity entirely in symbols:

[f is continuous] ⇐⇒ ∀x∀ǫ∃δ∀y [p(x, y, δ) ⇒ q(x, y, ǫ)]. (1′′)

3. The most common English rendering of p ⇒ q is

If p, then q, (7)

One also says “p implies q.” It is sometimes said that the English counterpart
of ⇒ is IF, but this is not quite right, because the “if” in (7) comes before

the p. Therefore,

p IF q

corresponds better to q ⇒ p than to p ⇒ q. However, if we say

p ONLY IF q,

then we do get something that means p ⇒ q; it says that if q is false, then p
is false, which is the contrapositive (see 8 below) of p ⇒ q.
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4. p ⇐⇒ q is equivalent to (p ⇒ q) ∧ (q ⇒ p). Thus

p IF AND ONLY IF q

is an English way of saying p ⇐⇒ q. In fact, it is the standard way of
expressing equivalent conditions (usually ∀x [p(x) ⇐⇒ q(x)] statements) in
mathematical English. Often it is “blackboard abbreviated” to “IFF”.

5. p ⇒ q is equivalent to ¬p ∨ q. (By the way, like the minus sign in alge-
bra, ¬ binds tightly to the propositional symbol it applies to (“has highest
precedence”); for example, ¬p ∨ q means (¬p) ∨ q, not ¬(p ∨ q).)

6. The connective ⇒ is slightly subtle conceptually. Right now you may be
wanting to ask:

A. What is the justification for the top half of the table? Does it make sense
to say, “If 2 + 2 = 5, then sinx is a continuous function,” or “If 2 + 2 = 5,
then sinx is not a continuous function.”?

B. Does it make sense to say, “If China is in Asia, then sin x is a continuous
function,” when the two statements obviously have no connection with
each other?

The answer to question A is that we want p ⇒ q to be meaningful and
useful when p and q are open sentences — in particular, when they are inside
quantified sentences, such as

∀x

[

If |x| <
π

4
, then | sinx| <

1√
2

.

]

This is a true and useful theorem. It does what we want of a theorem: When-
ever a number is less than π

4
in magnitude, it enables us to conclude (correctly)

that its sine is less than 1√
2

. However, there are other numbers, such as x = π

2
,

for which both the hypothesis and the conclusion are false, and there are still
other numbers, such as x = π, for which the hypothesis is false but the conclu-
sion is true. We must demand that these cases be consistent with the theorem,
and the connective ⇒ is defined to make this so. If we changed the top
two lines of the truth table, or left them undefined, then the theorem would
become false, or indeterminate, for some of these cases. This would make the
formulation of mathematical statements very cumbersome.

The resolution of point B is similar. Propositional calculus is concerned only
with the truth values of sentences, not with what they mean. There are only 2
truth values, Yes and No. In this sense all true sentences are the same, and all
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false ones are the same, just as all numbers 8 are the same, regardless of what
things you counted to get the number 8. Therefore, to say

If China is in Asia, then sinx is a continuous function. (8)

is no more strange than to say

The number of planets in the solar system is less than the

number of states in the Union. (9)

There is no scientific law that makes (9) true; it is simply a fact. The same
goes for (8).

7. If ∀x [p(x) ⇒ q(x)], then one says

p is a sufficient condition for q

(that is, knowing p is enough to make us certain of q), and

q is a necessary condition for p

(that is, if q is false, then p can’t be true). Therefore, if p is both necessary
and sufficient for q, then ∀x [p(x) ⇐⇒ q(x)].

8. Associated with p ⇒ q are 3 closely related propositions:

contrapositive: ¬q ⇒ ¬p
converse: q ⇒ p
inverse: ¬p ⇒ ¬q

The original statement and its contrapositive are logically equivalent. The
converse and the inverse are equivalent, because the inverse is the contrapositive
of the converse. But the original and the converse are not logically equivalent
(although they may both be true under certain circumstances).

Example of 7 and 8: Another bugaboo of the calculus student is infinite

series,
∑∞

n=0
an . Let p stand for

an → 0 as n → ∞,

and q stand for

The series
∞
∑

n=0

an converges.

Then q implies p (Stewart, Sec. 10.2, Theorem 6), but p does not imply q (be-
cause the harmonic series, for instance, is a counterexample: Stewart Sec. 10.2,
Example 7). Thus
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(A) Tending of the terms to 0 is a necessary condition for convergence, but not a
sufficient condition. (In contrast, most of the series convergence theorems state
sufficient conditions (e.g., the alternating series test (Stewart, Sec. 10.4) and
the ratio test (Sec. 10.3).)

(B) p ⇒ q is false for the harmonic series, but its converse, q ⇒ p, is true. (Of
course, p ⇒ q is true of all series that happen to be convergent.) If we attach
a universal quantifier over all series, a ≡ {an}, then the result

∀a [p(a) ⇒ q(a)]

is false, but
∀a [q(a) ⇒ p(a)]

is true.

Various logical techniques

Modus ponens and universal specification are the basic rules of deduction:

From p ⇒ q and p you can conclude q.

From ∀x p(x) you can conclude p(a) (where a is the name of some particular
thing in the universe of discourse).

Here are some more rules:

Existential generalization: From p(a) you can conclude ∃x p(x).

Reasoning by cases and by reductio ad absurdum require introducing tempo-
rary assumptions, which in Greenberg’s style of proof writing would be labeled “by
hypothesis” [item (1) of Logic Rule 1 (p. 56)]. Eventually one closes off this subd-
eduction by reaching either a contradiction (refuting the hypothesis) or the desired
conclusion (so that you can turn to considering the next case).

Similarly, if you have assumed p and consequently exhibited a proof of q, then
you can conclude p ⇒ q. This is a deduction converse to modus ponens. The
universal and existential rules also have converse procedures, but it can be treach-
erous to use them together: see Part 2 of my logic notes. These last two techniques
involve temporarily giving a name to a variable that ultimately belongs inside a
quantifier, so that the intermediate steps can be carried out without writing lots of
quantifiers.

Substitution rule (p. 66): If a = b and p(a) is a theorem, then p(b) is a theorem.
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Incidence geometry (Follow pp. 69–71)

Undefined terms: point; line; incidence (P I l, stated as “P lies on l” or “l
passes through P”).

Axioms I-1–I-3, in verbal and symbolic versions (p. 70 and p. 69). Write
verbal forms with “nop” and “nil” for “point” and “line”.

Defined terms: collinear; concurrent; parallel (write out “parallel” symboli-
cally

l 6= m ∧ ¬∃P (P I l ∧ P I m)

and note that one clause is redundant by I-2). [Might want to mention parallelism
properties here.]

Proposition 2.1: ∀l∀m[
(

l 6= m ∧ ¬(l‖m)
)

⇒ ∃!P (P I l ∧ P I m)]

Informal argument: Suppose to the contrary that l and m have two (or more)
nops in common, P and Q. By I-1, there is a unique nil through P and Q. Then l
and m must be the same nil.

Symbolic proof: Expand the hypothesis:

l 6= m ∧ ∃P (P I l ∧ P I m). [1][3a]

For later reference, expand the conclusion:

∃P [P I l ∧ P I m ∧ ∀Q(Q I l ∧ Q I m ⇒ Q = P )].

(If the P in the hypothesis can be used as the P in the conclusion, we are half done!)
Expand I-1:

P 6= Q ⇒ ∃l[P I l ∧ Q I l ∧ ∀m(P I m ∧ Q I m ⇒ m = l)].

(Beware that the l and m here are not necessarily the same as those in the theorem
we’re proving.) Assume we have another Q: Q I l ∧ Q I m [2a][3b]; try to prove Q
= P.

Assume P 6= Q [2b];
then by I-1 (with letters changed to avoid possible fallacy)

∃n[P I n ∧ Q I n ∧ ∀k(P I k ∧ Q I k ⇒ k = n)]. [4]

But we know P I l (main hypothesis) and Q I l (midlevel hypothesis); so
l = n. Similarly, m = n. So l = m. But l 6= m (main hypothesis); so the
inner hypothesis, P 6= Q, is false;

so P = Q (given the midlevel hypothesis).
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That is, we have proved for arbitrary Q that

Q I l ∧ Q I m ⇒ Q = P. [5]

That finishes the proof of the conclusion.

Now compare with the author’s semiformal proof on p. 58. There are some mi-
nor differences, but we can identify each of our steps with his (bracketed numbers).
I tend to write justifications before statements (to expound strategy). Also, I try
to indent the subdeductions with temporary hypotheses. On homework for Prop.
2.2–5, write either a Greenberg-style formal proof or a symbolic proof, whichever
you find easier.

[Discuss 2.3 and “useful lemma” below in class.] (Beware of prematurely iden-
tifying the points and lines in I-3 with those in the proposition.) Note: RAA is
more useful for discovering proofs than for writing proofs.

Useful lemma: For every point P, there exist two other points that are not
collinear with P. (Propositions 2.4 and 2.5 will quickly follow.)

Parallelism properties

These definitions (crucial for Exercise 2.9) are hidden in the section “Models”.

Elliptic: No parallel lines exist, ever!

Euclidean: ∀l∀P not on l there is a unique line m through P parallel to l.

Hyperbolic: ∀l∀P not on l there exist many lines (at least 2) through P parallel
to l.

IMPORTANT: It is possible that none of the three holds. There could be
one line and point with a unique parallel and another line and point with many
parallels, for instance.

Finite models of incidence geometry

Fig. 2.4: 3 points, 3 lines; elliptic. [Replace lines by Venn ellipses; label points
and lines.] (“the triangle”)

Fig. 2.5: 4 points, 6 lines; Euclidean. (“the tetrahedron”)

Fig. 2.6: 5 points, 10 lines; hyperbolic. (Note that the two dotted lines in back
may not intersect, and even if they do, that point is not one of the points of the
geometry.)
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Dual interpretation of Fig. 2.4: nils = points, nops = lines. [Relabel things con-
sistently.] Can’t do that with nonelliptic models. Elliptic models are self-dual be-
cause of these correspondences, which make the statements symmetrical in “points”
and “lines”:

I-1 ↔ elliptic ‖ ∧ 2.1

I-2 ↔ 2.5

I-3 ↔ 2.2

2.3 ↔ 2.4

Philosophical significance of models

We assume our intuition about finite sets of points is correct; therefore, verify-
ing the axioms in a finite model shows that the axioms are consistent. We assume
that the laws of logic are correct; therefore, the theorems are true in each model.
Moreover, we have shown that each of the three ‖ properties is consistent with the
axioms; therefore, none of the ‖ properties can be proved from the I axioms, since
then it would be true in all the models! (This doesn’t settle the original Euclidean
‖ debate, because that concerned Euclid’s axioms, not the I axioms.)

Remarks on the 3 paragraphs of the “Consistency” section (pp. 76–
77):

1. In an inconsistent system, all statements are provable: (p ∧ ¬p) ⇒ q is a
tautology, by truth tables.

2. This paragraph strikes me as circular and unnecessary. [debate]

3. This one is correct and important.

A quick tour of projective and affine spaces

Definition: An affine plane is an incidence geometry with the Euclidean ‖
property.

Definition: A projective plane is an incidence geometry with the elliptic ‖
property, and such that every line goes through at least 3 points.

So the “tetrahedron” is an affine plane, but the “triangle” is not a projective
plane, because it doesn’t have enough points.
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Theorem: Any affine plane can be extended to a projective plane by adding
points at infinity and a line at infinity. “Parallel lines are declared to meet at
infinity.” See pp. 82–84 for details.

The projective completion of the tetrahedron is the smallest projective plane,
the Fano plane, with 7 points and 7 lines (Fig. 2.8).

Projective planes are self-dual.

The real (infinite!) projective plane

1. The ordinary Euclidean plane is affine, and its projective completion is (topo-
logically) a sphere with antipodes identified (Fig. 2.9, Example 7).

2. Let F be a field. (Think of F = R.) Then the vector space F2 is an affine
plane whose lines are the loci ax+by = c (“affine subspaces” in linear algebra).
The projective plane P2(F) can be identified as the set of all lines through the

origin in F3. Those are the nops; the nils are the loci ax + by + cz = 0. Note
that





x
y
z



 ≃





λx
λy
λz



 and similarly for ( a b c ) .

Self-duality is clear. (Note: Lines through the origin are in 1–1 correspondence
with points on the unit sphere, antipodally identified.)

If F is the finite field of two elements, {0, 1}, then F2 is the tetrahedron and
P2(F) is the Fano plane (Major Exercise 5).
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