Midterm Test - Solutions

Name: \qquad

1. (Multiple choice - each 5 pts.) (Circle the correct capital letter.)
(a) Let P stand for the proposition "All right angles are congruent" and let Q stand for the SAS triangle congruence criterion. Which of the following is true?
(A) Both P and Q were assumed as axioms by Euclid.
(B) Both P and Q were proved as theorems by Euclid.
(C) Q can easily be proved from P .
(D) Modern geometry has Q as an axiom and P as a theorem, but in Euclid's writing it was the reverse.
(E) Modern geometry has P as an axiom and Q as a theorem, but in Euclid's writing it was the reverse.
D
(b) Which of these is not a theorem of Hilbert geometry (without a parallel postulate)?
(A) If $\angle \mathrm{CAB}<\angle \mathrm{DEF}$ and $\angle \mathrm{DEF}<\angle \mathrm{GHI}$, then $\angle \mathrm{CAB}<\angle \mathrm{GHI}$.
(B) If D is in the interior of $\angle C A B$, then so is every other point on $\overrightarrow{A D}$ except A.
(C) Every point D in the interior of $\angle C A B$ lies on a segment joining a point E on $\overrightarrow{A B}$ to a point F on $\overrightarrow{\mathrm{AC}}$.
(D) If $\angle \mathrm{CAB}<\angle \mathrm{DEF}$ and $\angle \mathrm{DEF} \cong \angle \mathrm{GHI}$, then $\angle \mathrm{CAB}<\angle \mathrm{GHI}$.
(E) If $\overrightarrow{A D}$ is between $\overrightarrow{A C}$ and $\overrightarrow{A B}$, then $\overrightarrow{A D}$ intersects segment BC.

C (This is the "warning" on p. 115.)
2. (16 pts.) Prove ONE of the triangle congruence theorems, either ASA or SSS. (At most

8 points extra credit for doing both.)

For ASA, see solution to Exercise 3.26, pp. 151-152. SSS was extensively discussed in class.
3. (20 pts.) The tetrahedron is an incidence geometry consisting of 4 points and 6 lines. (The lines are the two-point subsets.)
(a) State the 3 incidence axioms that this system (like every incidence geometry) satisfies. See Chapter 2.
(b) State the parallelism property that this particular system satisfies.

Euclidean (see pp. 74-75).
4. (11 pts.) Simplify $\neg \forall x \exists y[[(x<y) \wedge \exists z(x+z>y)] \Rightarrow(x+y \leq 3)]$.
(Push the " \neg " in as far as you can! Truth or falsity of the statement is irrelevant. In Greenberg's notation, \neg is \sim, and \wedge is \&.)
Work in steps:

$$
\begin{aligned}
& \exists x \forall y \neg[[(x<y) \wedge \exists z(x+z>y)] \Rightarrow(x+y \leq 3)] ; \\
& \exists x \forall y[[(x<y) \wedge \exists z(x+z>y)] \wedge \neg(x+y \leq 3)] ; \\
& \quad \exists x \forall y[(x<y) \wedge \exists z(x+z>y) \wedge(x+y>3)] .
\end{aligned}
$$

5. (18 pts.) Pasch's theorem says, loosely, that any line that goes into a triangle comes back out.
(a) State the theorem precisely.
(b) Prove it.

See p. 114.
6. (Essay - 25 pts.) Let \mathcal{S} be a set. Recall that an equivalence relation on \mathcal{S} is a binary relation \sim with the properties (for all A, B, C in \mathcal{S})
(1) reflexivity: $A \sim A$,
(2) symmetry: $A \sim B \Rightarrow B \sim A$,
(3) transitivity: $A \sim B \wedge B \sim C \Rightarrow A \sim C$.

Recall also that a partition of \mathcal{S} is a collection $\left\{S_{i}\right\}$ of subsets of S with the properties
(4) disjointness: $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$,
(5) exhaustiveness: $S=\bigcup_{i} S_{i}$.

Show how every equivalence relation on \mathcal{S} determines a partition of \mathcal{S}, and how every partition of \mathcal{S} determines an equivalence relation on \mathcal{S}. (In each of the two cases, explain how the new entity is defined from the old one and prove that it satisfies all the clauses in the definition.)

