
Chapters 5 and 6

I won’t repeat most of the history. That doesn’t mean it’s unimportant,
only that I don’t have anything to add. I’ll review alternatives to the parallel
postulate later.

Let’s start with a remark on pp. 248–249: “A model of hyperbolic plane
geometry is a sphere of imaginary radius with antipodal points identified in the
three-dimensional spacetime of special relativity.” This is better explained on pp.
311–313. I will come back to it later.

Results in non-Euclidean Hilbert geometry (pp. 250ff)

Negation of HE: ∃ a line l and a P not on l such that at least two distinct
lines through P are ‖ to l.
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Def.: A Hilbert plane satisfying this is non-Euclidean.

Proclus’s Theorem: If a Hilbert plane is semi-Euclidean (rectangles exist;
triangle sums = 180◦) and Aristotle’s axiom holds, then HE holds. The converse
is also true: Both parts of the converse were proved in Chap. 4.

Basic Theorem 6.1: A non-Euclidean Hilbert plane satisfying Aristotle’s
axiom satisfies the acute angle hypothesis (and hence a list of things we proved
in the last chapter).

Remark: Recall that “rectangles do not exist” is a quick way of saying that
either the acute angle hypothesis or the obtuse angle hypothesis holds. (See
p. 182.)

Universal Non-Euclidean Theorem and Corollary: In a Hilbert plane
in which rectangles do not exist, for every l and every P not on l there are at
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least 2 parallels to l through P (and hence infinitely many — cf. proof of Theorem
4.4).

Def.: The defect of a triangle is the amount by which the three angles fail
to total 180◦.

Prop. 6.1: If a triangle is divided into 2 triangles, its defect is the sum of
the defects of the parts.

Remark: In Chap. 10 it is proved that the area of a triangle is proportional
to its defect. (The constant of proportionality is fixed by the scale factor of the
hyperbolic geometry — the “radius” R of the hyperboloid in the model mentioned
above.) It follows that in any particular hyperbolic geometry there is an upper
limit on the area of triangles, since the defect can’t be more than 180◦. The next
proposition shows how this can be true, even though segments can be arbitrarily
long:
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Prop. 6.2: Acute hyp. ⇒ if two triangles are similar, then they are
congruent. (AAA is true!) [sketch] [The definition of “similar” is on pp. 215–216.
For some reason this information is not in the book’s index.]

Related remark: HE ⇐⇒ Wallis’s Axiom: Given any segment and any
triangle, there is a similar triangle built on that segment.

In effect, Wallis’s axiom says that space looks the same at all scales. This
is true of a Euclidean plane, but false of a sphere or a hyperboloid, where the
radius sets the scale of curvature.

Prop. 6.3: In a plane in which rectangles do not exist, parallel lines are
not equidistant. In fact, if l′‖l, then any set of points on l′ equidistant from l

contains at most two points. [I have reversed the labeling from the book’s for
later convenience.]
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Related remark: semi-Euclidean ⇐⇒ Clavius’s Axiom: The parallel
through P is the equidistant locus through P (both relative to a line l).

Remark: “I hope the reader is not too shocked to see [in Fig. 6.7] line l drawn
as being ‘curved’ !” This should not be a shock to those who have drawn meridians
and parallels on a sphere. [2 sketches] Great circles of constant longitude are not
equidistant. Parallels of constant latitude are not great circles, except for the
equator.

Limiting parallel rays

See Fig. 6.10 (p. 258), and Fig. 6.14 (p. 264), and Figs. 7.9–10 (p. 304);
also Gergonne’s flawed argument, Ex. 5.7, p. 231. Given l and P, some lines
through P (those closest to the perpendicular) intersect l, others do not. Is there
a boundary case between those that do and those that don’t? In principle, there
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are four possibilities, as one looks at rays moving outward from the perpendicular
one:

1. There is a last ray that intersects l, and also a first ray that does not inter-
sect l.

2. There is neither a last ray that intersects l nor a first ray that does not
intersect l.

3. There is a last ray that intersects l, and there is no first ray that does not
intersect l.

4. There is no last ray that intersects l, but there is a first ray that does not
intersect l.

Case 1 is impossible, since it implies a finite gap in angle between the two
boundary rays. If we assume the Dedekind continuity property, then there is
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a ray corresponding to every (real) angle between 0 and 90◦; thus case 2 is
impossible. (But if we drop the Dedekind assumption and suppose that the only
angles that exist are those whose tangents are rational numbers, then case 2
applies whenever there “should be” a ray whose tangent is irrational.) The hard
question is deciding between possibilities 3 and 4. It turns out that we should
reject 3 and expect 4 in all situations:

Under sufficient continuity axioms, it can be proved that a boundary ray
does exist and it does not intersect. In other words, there is a first ray that fails
to meet l. Cf. least upper bound vs. maximum, and the possible nonexistence of
either if R is replaced by Q. (Greenberg’s theorem uses Aristotle and line-circle;
Dedekind would do for both.)

“Advanced Theorem” (p. 258): In non-Euclidean planes satisfying Aris-
totle’s axiom and line-circle continuity, limiting parallel rays exist for every line l

and point P not on l.
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Hilbert made this property another axiom (p. 259):

Hilbert’s Hyperbolic Axiom of Parallels: ∀ l, P, a limiting parallel ray
exists, and it is not ⊥ to the ⊥ from P to l.

Contrast the negation of HE, p. 250.

Definitions: A Hilbert plane obeying this axiom is a hyperbolic plane. A
non-Euclidean plane satisfying Dedekind’s axiom is a real hyperbolic plane.

Every plane satisfying the Hilbert IBC axioms either satisfies HE or does
not, so all planes lie on one of the rows below (where the first row comes from
the definitions above, and the second row from definitions in Chapter 3):

real hyperbolic ⇒ hyperbolic ⇒ non-Euclidean (Hilbert with ¬HE)
real Euclidean ⇒ Euclidean ⇒ Pythagorean (Hilbert with HE)

(“Euclidean” was defined to include the assumption of circle-circle continuity,
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which is equivalent to line-circle continuity.*) The first two columns of this table
describe more restrictive systems, characterized by continuity axioms:

Corollaries:

1. A Hilbert plane satisfying Dedekind’s axiom is either real Euclidean or real
hyperbolic.

2. A Hilbert plane satisfying Aristotle’s axiom and line-circle continuity is either
Euclidean or hyperbolic.

* Greenberg’s book shows only that circle-circle implies line-circle (Major Ex. 4.1),
but Greenberg’s recent article, M. J. Greenberg, Old and new results in the foundations
of elementary plane Euclidean and non-Euclidean geometries, Amer. Math. Monthly
117 (2010) 198–219 (see p. 202), indicates that the converse has been known for some
time but requires a more sophisticated proof.

9



Remark: In Chapter 3 we noted that R2 is a real Euclidean plane and K2

is a Euclidean plane that is not real. (K is the field of constructible numbers,
closed under taking square roots.) You might think that Q2 is an example of a
Hilbert-plane-with-HE that is not Euclidean. But no, Q2 is not even a Hilbert
plane! Axiom C-1 fails: Let A and B lie on the horizontal axis and let ray r

emanate from A′ along a 45◦ line. The distance between A and B is a rational
number, but all points on r are separated by rational multiples of

√
2.

So, you might be tempted to think thatK2 is the “sparsest” coordinate plane,
so that perhaps all Hilbert-planes-with-HE are Euclidean. Again no. Project 2 in
Chap. 3 (see also pp. 572–573) defines a Pythagorean field Ω closed under taking
square roots of numbers of the form c2+1 (in addition to the rational operations).
Ω2 is strictly smaller than K2 but large enough to save Axiom C-1. Thus the
bottom right entry in the table above is nontrivial.
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Theorem 6.3: In a hyperbolic plane, if m is ‖ to l, then either m contains a
limiting parallel ray in one direction or the other, or there is a (unique) common
⊥ to l and m (but not both). (See Fig. 6.14, p. 264.)

Prop. 6.6: In a hyperbolic plane, given line l and point P (not on l), the
angles between the perpendicular from P to l and the limiting rays from P to l

are acute and are the same on both sides. (Their measure is called the angle of

parallelism associated with that ⊥ segment. Not surprisingly, it is determined by
the length of the segment — see p. 332.)
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Historical alternatives to the parallel postulate

1. Euclid (∼300 BCE): Interior angles < 180◦ ⇒ intersection (EV).

2. Proclus (∼450), Playfair (1795): Parallels are unique (HE).

3. Clavius (1574): Parallel = equidistant.

4. Wallis (1693): Scale invariance (similar triangles always exist).

5. Clairaut (1741): Rectangles exist.

6. Legendre (∼1800): ∀ acute angle A and ∀ D interior to angle A, ∃ a line
through D and not through the vertex A that intersects both sides of angle A.
(That is, the Warning on p. 115 should be defied.)

Most of these people thought they were proving EV because their substitute
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axioms were “obvious”. They were wrong.

Dehn’s models

[Table from Dehn’s 1900 paper (table translated by G. B. Halsted, “Supple-
mentary report on non-Euclidean geometry,” Science 14 (1901) 705–717.)]

This situation makes necessary the complicated statement of hypotheses in the
theorems about Saccheri–Lambert quadrilaterals.

See pp. 188-189 and 250, especially footnote on p. 189. My attempt to
elaborate: (These remarks should be considered intuitive only.)

Start by noting that F2 and F3 model Euclidean 2D and 3D geometry, if F
is an ordered field in which you can take square roots (Theorem, p. 141).
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There are such fields containing “infinitesimal” elements, say a, such that

na ≡
n∑

j=1

a < r for any r ∈ Q+.

(Thus Archimedes’s axiom fails for segments of such lengths.) The modern theory
of nonstandard analysis attempts (among other things) to vindicate pre-19th-
century calculus in this way (i.e., making equations like dy = dy

dx
dx literally

true); it developed in the mid-20th century, hence 50 years after Dehn, but Dehn
already knew about non-Archimedean fields. The apparent judgment of history
is that calculus doesn’t need this: the rigorous theory of limits is better. Q and
K are too small; fields F with infinitesimals are two big; R is just right.

Nevertheless, a rigorous theory of infinitesimals allows one to create models
of non-Legendrean and of semi-Euclidean (but not Euclidean) geometry. Let Π
be the subset of F2 of points whose coordinates are infinitesimal. Since you can’t
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get out of Π by adding elements of Π, the Hilbert axioms are still satisfied, so Π
is also a model for them. Also, it satisfies the right angle hypothesis because F2

does. However, two lines in F2 determined by pairs of points in Π that intersect
in a point not in Π count as parallel in Π. Therefore, there are lots of parallels;
HE/EV fails although the plane is semi-Euclidean (rectangles exist; triangles add
to 180◦).

Next, consider a sphere in F3. (This is not precisely Dehn’s construction,
but seems to be consistent with Greenberg’s footnote.) Consider an infinitesimal
neighborhood of a point on the sphere. For example, introduce polar coordinates
(θ, φ) around the north pole and restrict θ to infinitesimal values (getting a very
tiny polar cap). Now most pairs of great circles do not intersect inside the cap,
so they are parallel. However, the fourth angles of Lambert quads. inside the cap
are obtuse (although only infinitesimally larger than a right angle).
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