
Proof of Proposition 3.13 (Exercises 21–23)

First, to make the logical substitutions less confusing, let’s rewrite Prop. 3.12 and the
definitions of < and > with primed letters:

Proposition 3.12: Given A′C′ ∼= D′F′, for any point B′ between A′ and C′ there is
a unique point E′ between D′ and F′ such that A′B′ ∼= D′E′.

•
A′

•
B′

•
C′

•
D′

•
E′

•
F′

Definition of segment ordering: A′B′
< C′D′ (or C′D′

> A′B′) means that there
is a point E′ such that C′

∗ E′
∗ D′ and A′B′ ∼= C′E′.

(a) Prove that exactly one of AB < CD, AB ∼= CD, AB > CD holds.

By Axiom C-1 there is a unique F on
→

CD with AB ∼= CF. By definition of a ray, there
are three cases (mutually exclusive):

1. F = D. Then AB ∼= CD (and conversely, by the uniqueness of F).
2. C ∗ F ∗ D. Then AB < CD (and conversely) by definition of < (with E′ = F, etc.).
3. C ∗ D ∗ F. In Prop. 3.12 let A′ = C, B′ = D, C′ = F, D′ = A, F′ = B:

CF ∼= AB ∧ C ∗ D ∗ F ⇒ ∃! E′: A ∗ E′
∗ B ∧ CD ∼= AE′

.

Because the two hypotheses hold, the two conclusions hold; they say that AB > CD
(by the definition with A′ = C, B′ = D, C′ = A, D′ = B). [If you don’t like what I’m
about to say, look at the alternative proof after the proof of (d).] Conversely, if AB
> CD, then such an E′ exists; we have CD ∼= AE′ and A ∗ E′

∗ B as well as CF ∼=
AB. If F = D, then we have shown that AB ∼= CD, which contradicts the uniqueness
of E′ (as guaranteed by Axiom C-1). If C ∗ F ∗ D, then because CD ∼= AE′ there
is a G between A and E′ with AG ∼= CF (by 3.12 again). But then AG ∼= AB by
transitivity, hence G = B by the uniqueness part of C-1. Thus A ∗ B ∗ E′ and A ∗ E′

∗ B, contradicting Axiom B-3. (Remark: Here we have proved a sort of converse to
Axiom C-3.) So C ∗ D ∗ F is the only possibility.

(b) Prove that AB < CD ∧ CD ∼= EF ⇒ AB < EF.

There is a G with C ∗ G ∗ D and AB ∼= CG. Apply Prop. 3.12 with A′ = C, B′ = G,
C′ = D, D′ = E, E′ = H, F′ = F:

∃H: E ∗ H ∗ F ∧ CG ∼= EH.

Hence AB ∼= EH, which implies AB < EF by the definition.



(c) Prove that AB > CD ∧ CD ∼= EF ⇒ AB > EF.

There is a point H such that A * H * B and AH ∼= CD. Then AH ∼= EF by transitivity
of ∼= (Axiom C-2). So by definition of <, we have EF < AB.

(d) Prove that AB < CD ∧ CD < EF ⇒ AB < EF.

By hypothesis, there is a G such that C ∗ G ∗ D ∧ AB ∼= CG, and there is an H such
that E ∗ H ∗ F ∧ CD ∼= EH. By Prop. 3.12, there is a point I such that E ∗ I ∗ H ∧ CG
∼= EI. By Prop. 3.3 and transitivity of congruence, therefore, E ∗ I ∗ F ∧ AB ∼= EI, which
says precisely that AB < EF.

Remark: The proof of (d) does not use (a), so we may use (d) to provide an alternative
to the awkward “Conversely . . . ” part of the proof of (a.3): If AB > CD (i.e., CD < AB)
and also AB < CD, then by (d), AB < AB, which is false. (By the uniqueness statement
in Axiom C-1 and the distinctness statement in Axiom B-1, we can’t have both AB ∼= AB
and AB ∼= AE with A ∗ E ∗ B.) If AB > CD and also AB ∼= CD, then we get essentially
the same contradiction. This completes the proof that only one of the three conditions
can hold.


