Proof of Proposition 3.13 (Exercises 21-23)

First, to make the logical substitutions less confusing, let's rewrite Prop. 3.12 and the definitions of $<$ and $>$ with primed letters:

Proposition 3.12: Given $A^{\prime} \mathrm{C}^{\prime} \cong \mathrm{D}^{\prime} \mathrm{F}^{\prime}$, for any point B^{\prime} between A^{\prime} and C^{\prime} there is a unique point E^{\prime} between D^{\prime} and F^{\prime} such that $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \cong \mathrm{D}^{\prime} \mathrm{E}^{\prime}$.

Definition of segment ordering: $\mathrm{A}^{\prime} \mathrm{B}^{\prime}<\mathrm{C}^{\prime} \mathrm{D}^{\prime}\left(\right.$ or $\left.\mathrm{C}^{\prime} \mathrm{D}^{\prime}>\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$ means that there is a point E^{\prime} such that $\mathrm{C}^{\prime} * \mathrm{E}^{\prime} * \mathrm{D}^{\prime}$ and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \cong \mathrm{C}^{\prime} \mathrm{E}^{\prime}$.
(a) Prove that exactly one of $\mathrm{AB}<\mathrm{CD}, \mathrm{AB} \cong \mathrm{CD}, \mathrm{AB}>\mathrm{CD}$ holds.

By Axiom C-1 there is a unique F on $\overrightarrow{\mathrm{CD}}$ with $\mathrm{AB} \cong \mathrm{CF}$. By definition of a ray, there are three cases (mutually exclusive):

1. $\mathrm{F}=\mathrm{D}$. Then $\mathrm{AB} \cong \mathrm{CD}$ (and conversely, by the uniqueness of F).

2 . $\mathrm{C} * \mathrm{~F} * \mathrm{D}$. Then $\mathrm{AB}<\mathrm{CD}$ (and conversely) by definition of $<$ (with $\mathrm{E}^{\prime}=\mathrm{F}$, etc.).
3 . $\mathrm{C} * \mathrm{D} * \mathrm{~F}$. In Prop. 3.12 let $\mathrm{A}^{\prime}=\mathrm{C}, \mathrm{B}^{\prime}=\mathrm{D}, \mathrm{C}^{\prime}=\mathrm{F}, \mathrm{D}^{\prime}=\mathrm{A}, \mathrm{F}^{\prime}=\mathrm{B}$:

$$
\mathrm{CF} \cong \mathrm{AB} \wedge \mathrm{C} * \mathrm{D} * \mathrm{~F} \Rightarrow \exists!\mathrm{E}^{\prime}: \mathrm{A} * \mathrm{E}^{\prime} * \mathrm{~B} \wedge \mathrm{CD} \cong \mathrm{AE}^{\prime}
$$

Because the two hypotheses hold, the two conclusions hold; they say that $\mathrm{AB}>\mathrm{CD}$ (by the definition with $\mathrm{A}^{\prime}=\mathrm{C}, \mathrm{B}^{\prime}=\mathrm{D}, \mathrm{C}^{\prime}=\mathrm{A}, \mathrm{D}^{\prime}=\mathrm{B}$). [If you don't like what $\mathrm{I}^{\prime} \mathrm{m}$ about to say, look at the alternative proof after the proof of (d).] Conversely, if AB $>\mathrm{CD}$, then such an E^{\prime} exists; we have $\mathrm{CD} \cong \mathrm{AE}^{\prime}$ and $\mathrm{A} * \mathrm{E}^{\prime} * \mathrm{~B}$ as well as $\mathrm{CF} \cong$ AB . If $\mathrm{F}=\mathrm{D}$, then we have shown that $\mathrm{AB} \cong \mathrm{CD}$, which contradicts the uniqueness of E^{\prime} (as guaranteed by Axiom C-1). If $\mathrm{C} * \mathrm{~F} * \mathrm{D}$, then because $\mathrm{CD} \cong \mathrm{AE}^{\prime}$ there is a G between A and E^{\prime} with $\mathrm{AG} \cong \mathrm{CF}$ (by 3.12 again). But then $\mathrm{AG} \cong \mathrm{AB}$ by transitivity, hence $\mathrm{G}=\mathrm{B}$ by the uniqueness part of $\mathrm{C}-1$. Thus $\mathrm{A} * \mathrm{~B} * \mathrm{E}^{\prime}$ and $\mathrm{A} * \mathrm{E}^{\prime}$ $*$ B, contradicting Axiom B-3. (Remark: Here we have proved a sort of converse to Axiom $\mathrm{C}-3$.) So $\mathrm{C} * \mathrm{D} * \mathrm{~F}$ is the only possibility.
(b) Prove that $\mathrm{AB}<\mathrm{CD} \wedge \mathrm{CD} \cong \mathrm{EF} \Rightarrow \mathrm{AB}<\mathrm{EF}$.

There is a G with $\mathrm{C} * \mathrm{G} * \mathrm{D}$ and $\mathrm{AB} \cong \mathrm{CG}$. Apply Prop. 3.12 with $\mathrm{A}^{\prime}=\mathrm{C}, \mathrm{B}^{\prime}=\mathrm{G}$, $\mathrm{C}^{\prime}=\mathrm{D}, \mathrm{D}^{\prime}=\mathrm{E}, \mathrm{E}^{\prime}=\mathrm{H}, \mathrm{F}^{\prime}=\mathrm{F}:$

$$
\exists \mathrm{H}: \mathrm{E} * \mathrm{H} * \mathrm{~F} \wedge \mathrm{CG} \cong \mathrm{EH} .
$$

Hence $\mathrm{AB} \cong \mathrm{EH}$, which implies $\mathrm{AB}<\mathrm{EF}$ by the definition.
(c) Prove that $\mathrm{AB}>\mathrm{CD} \wedge \mathrm{CD} \cong \mathrm{EF} \Rightarrow \mathrm{AB}>\mathrm{EF}$.

There is a point H such that $A * H * B$ and $A H \cong C D$. Then $A H \cong E F$ by transitivity of $\cong($ Axiom C-2). So by definition of $<$, we have $\mathrm{EF}<\mathrm{AB}$.
(d) Prove that $\mathrm{AB}<\mathrm{CD} \wedge \mathrm{CD}<\mathrm{EF} \Rightarrow \mathrm{AB}<\mathrm{EF}$.

By hypothesis, there is a G such that $C * G * D \wedge A B \cong C G$, and there is an H such that $\mathrm{E} * \mathrm{H} * \mathrm{~F} \wedge \mathrm{CD} \cong \mathrm{EH}$. By Prop. 3.12, there is a point I such that $\mathrm{E} * \mathrm{I} * \mathrm{H} \wedge \mathrm{CG}$ \cong EI. By Prop. 3.3 and transitivity of congruence, therefore, $\mathrm{E} * \mathrm{I} * \mathrm{~F} \wedge \mathrm{AB} \cong \mathrm{EI}$, which says precisely that $A B<E F$.

Remark: The proof of (d) does not use (a), so we may use (d) to provide an alternative to the awkward "Conversely ..." part of the proof of (a.3): If $\mathrm{AB}>\mathrm{CD}$ (i.e., $\mathrm{CD}<\mathrm{AB}$) and also $\mathrm{AB}<\mathrm{CD}$, then by (d), $\mathrm{AB}<\mathrm{AB}$, which is false. (By the uniqueness statement in Axiom $C-1$ and the distinctness statement in Axiom B-1, we can't have both $A B \cong A B$ and $A B \cong A E$ with $A * E * B$.) If $A B>C D$ and also $A B \cong C D$, then we get essentially the same contradiction. This completes the proof that only one of the three conditions can hold.

