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We shall look at a sequence of increasingly general or complicated situations.
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1. Length of the graph of a function

The length of a short chord segment is given by

(∆s)2 = (∆x)2 + (∆y)2.
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Drop the parentheses.

s ≡ lim
∆xi→0

n
∑

i=1

∆si = lim
∆xi→0

n
∑

i=1

√

∆xi
2 +∆yi2

= lim
∆xi→0

n
∑

i=1

∆xi

√

1 +

(

∆yi
∆xi

)2

=

∫ xf

x0

√

1 + f ′(x)2 dx.

Shorthand: ds =
√

dx2 + dy2 =
√

1 + f ′(x)2 dx.

2. Length of a parametrized curve

Let x = x(t), y = y(t). ∆s2 = ∆x2 +∆y2 still.

3



s = lim
∆ti→0

n
∑

i=1

√

∆xi
2 +∆yi2

= lim
∆ti→0

n
∑

i=1

∆ti

√

(

∆xi

∆ti

)2

+

(

∆yi
∆ti

)2

=

∫ tf

t0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

Shorthand: ds =
√

dx2 + dy2 =
√

ẋ2 + ẏ2 dt (where ẋ ≡ dx
dt , etc.).

Special case: t = x. Then ẋ = 1, ds =
√

1 + ẏ2 dx — same as situation 1.

3. Three dimensions

Let x = x(t), y = y(t), z = z(t). Then

ds2 = dx2 + dy2 + dz2, s =

∫ tf

t0

√

ẋ2 + ẏ2 + ż2 dt.
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4. Polar coordinates in the plane

Define r and θ by x = r cos θ, y = r sin θ. A change ∆θ changes lengths by
r∆θ. Therefore, it is intuitively clear (and we’ll justify it in a moment) that

ds2 = dr2 + r2dθ2.

Example: Consider the arc at r = 2 from θ = 0 to θ = π/4. Let θ play the
role of the parameter, t.

ds =
√

dr2 + r2dθ2 =

√

(

dr

dθ

)2

+ 22
(

dθ

dθ

)2

dθ

=
√
0 + 4 dθ = 2 dθ.

s =

∫ π/4

0

2 dθ =
π

2
.
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In general,

ds =

√

(

dr

dt

)2

+ r2
(

dθ

dt

)2

dt.

(Note that r in the second term is a function of t, in general.)

A shorthand calculation leading to the arc length formula: Calculate

dx = cos θ dr − r sin θ dθ,

dy = sin θ dr + r cos θ dθ.

(This really means that

∆x = cos θ∆r − r sin θ∆θ + something very small,

etc.) It follows that

dx2 = cos2 θ dr2 + r2 sin2 θ dθ2 − 2r sin θ cos θ dr dθ,

dy2 = sin2 θ dr2 + r2 cos2 θ dθ2 + 2r sin θ cos θ dr dθ.
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Therefore, ds2 = dx2 + dy2 = dr2 + r2dθ2.

5. A curved surface embedded in 3-space

Example: The unit sphere, x2 + y2 + z2 = 1. As usual let

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Then, for instance, we have

dz = cos θ dr − r sin θ dθ,

but r is a constant in our problem (r = 1), so we can set dr = 0. Thus, ignoring
dr, we have

dx = cos θ cosφdθ − sin θ sinφdφ,

dy = cos θ sinφdθ + sin θ cosφdφ.
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It easily follows that

ds2 = dx2 + dy2 + dz2 = dθ2 + sin2 θ dφ2.

Note that near the “north pole”, θ = 0, we have sin θ ≈ θ and hence ds2 ≈
dθ2 + θ2 dφ2. That is, near the pole the angular spherical coordinates “look like”
plane polar coordinates, with θ in the role of r and φ in the role of θ.

6. Indefinite metric (in dimension 2)

Consider a new definition of “length”: Take the square of the distance from
(x1, y1) to (x2, y2) to be

∆s2 ≡ (x1 − x2)
2 − (y1 − y2)

2.
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This quantity can be positive or negative (or zero). For today let’s consider only
separations for which it’s positive, so we can take the square root and get a real
number for the distance. In the limit of small distances we get the arc length
formula

ds2 = dx2 − dy2.

Example: Consider the hyperbola y2 − x2 = R2, with y > 0 (so as to deal
with only one branch). It can be parametrized by

x = R sinh θ ≡ R
eθ − e−θ

2
,

y = R cosh θ ≡ R
eθ + e−θ

2
.

Note or recall that cosh2 θ − sinh2 θ = 1. Now calculate

dx = R cosh θ dθ, dy = R sinh θ dθ.
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Therefore,

ds2 = R2(cosh2 θ − sinh2 θ) dθ2,

or

ds = Rdθ.

Remark: The geometry of space-time in special relativity is like this. The y
coordinate is interpreted as time. Therefore, I shall henceforth write it as t.
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Diagrams can be misleading, because the lengths in this geometry are not
the same as the Euclidean lengths of the drawn segments representing them. For
example, the hyperbola x2 − t2 = 1 can be parametrized by

x = coshα, t = sinhα.

11



All points on this curve are the same “distance” (namely, 1) from the origin
(0, 0) with respect to the indefinite metric ds, but their Euclidean distances,
√

cosh2 α+ sinh2 α, become arbitrarily large.
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7. Indefinite metric in dimension 3, and a surface embedded there

This time we have coordinates x, y, and t , and the metric (arc length for-
mula)

ds2 = dx2 + dy2 − dt2.

(Here t plays the role pioneered by y in the previous situation, and y is now just
a second ordinary spatial coordinate.)

Consider the top half (t > 0) of the hyperbolic surface x2 + y2 − t2 = −R2.
It can be parametrized by

t = R cosh r, x = R sinh r cos θ, y = R sinh r sin θ.

Then

dt = R sinh r dr,

13



dx = R cosh r cos θ dr −R sinh r sin θ dθ,

dy = R cosh r sin θ dr +R sinh r cos θ dθ.

Thus ds2 = R2
(

dr2 + sinh2 r dθ2
)

. Recall that this means that the length of a
curve r(τ) is

∫ τ f

τ0

R

√

(

dr

dτ

)2

+ sinh2
(

r(τ )
)

(

dθ

dτ

)2

dτ .

This surface will prove to be a very important model of hyperbolic geometry.

Geodesics are curves that minimize length between fixed neighboring points.
Their parametrizations r(τ) satisfy a certain differential equation. But luckily
they have a more elementary characterization in our case: intersections of the
hyperboloid with planes through the origin in the 3-dimensional space (Fig. 7.19).
These are the analogs of the great circles on a sphere, and hence of straight lines
in a Euclidean plane.
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Note that the “radius” R is a scale factor distinguishing different models of
hyperbolic (or spherical) geometry, with Euclidean plane geometry emerging in
the limit R → ∞.
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