27 February 2019

Midterm Test – Solutions

- 1. (Multiple choice each 5 pts.) (Circle the correct capital letter.)
 - (a) The simplest example of an *elliptic* incidence geometry has
 - (A) 3 points.
 - (B) 4 points.
 - (C) 5 points.
 - (D) 7 points.
 - (E) [none of these]

А

- (b) Which of the following is *not* provable from the Hilbert I and B axioms?
 - (A) If D is in the interior of $\angle CAB$, then so is every other point on \overrightarrow{AD} except A.
 - (B) Every point D in the interior of $\angle CAB$ lies on a segment joining a point E on \overrightarrow{AB} to a point F on \overrightarrow{AC} .
 - (C) If D lies on line \dot{BC} , then D is in the interior of $\angle CAB$ if B * D * C.
 - (D) If AD is between AC and AB, then AD intersects segment BC.
 - (E) If D lies on line \overrightarrow{BC} , then B * D * C if D is in the interior of $\angle CAB$.

B [the Warning, p. 115]

- (c) Which of these is indisputably true?
 - (A) Babylonians were aware of the Pythagorean theorem 1000 years before Pythagoras.
 - (B) The ancient Hebrews believed that π is exactly equal to 3.
 - (C) Euclid's hostility to Aristotle's theory of the "finite universe" led him to his postulate that lines are actually infinitely long.
 - (D) Euclid stated the parallel postulate in the form we most often use today.
 - (E) Euclid's proof of the side-angle-side theorem is still valid in Hilbert's geometry.
- A [See Greenberg, p. 2. (In C, "hostility" is sheer speculation.)]
 - (d) Axiom C-4 authorizes us to construct an angle $\angle B'A'C'$ congruent to a given angle

 $\angle BAC$ adjacent to a given ray A'B'. The result is unique provided that

- \leftrightarrow
- (A) the side of the line A'B' on which the new angle appears is prescribed.
- (B) segment AB is congruent to segment A'B'.
- (C) the Euclidean parallel postulate holds.
- (D) \angle BAC is a right angle.
- (E) congruence of angles is an equivalence relation.

А

467A-S19

2. (10 pts.) Simplify $\neg \forall x \exists y [(x > 0 \land x \leq y) \lor \forall n (x > y^n \Rightarrow x + y > (x + y)^n)].$ (Push the "¬" in as far as you can!) (In Greenberg's notation, \neg is \sim , and \land is &.)

$$\exists x \,\forall y \,\neg \left[\left(x > 0 \land x \le y \right) \lor \forall n \left(x > y^n \Rightarrow x + y > (x + y)^n \right) \right]$$
$$\exists x \,\forall y \, \left[\neg \left(x > 0 \land x \le y \right) \land \exists n \,\neg \left(x > y^n \Rightarrow x + y > (x + y)^n \right) \right]$$
$$\exists x \,\forall y \, \left[\left(x \le 0 \lor x > y \right) \land \exists n \left(x > y^n \land x + y \le (x + y)^n \right) \right]$$

3. (15 pts.) State the three Hilbert incidence axioms.

[See Greenberg, p. 69.]

4. (20 pts.) Do **ONE** of these [(A) or (B)]. (Extra credit for doing both is limited to 10 points.)

(A) State and prove Pasch's theorem. [See Greenberg, p. 114.]

(B) Recall that Axiom B-4 states:

For any line l and any three points A, B, C not lying on l,

- (i) If A and B are on the same side of *l* and if B and C are on the same side of *l*, then A and C are on the same side of *l*.
- (ii) If A and B are on opposite sides of l and if B and C are on opposite sides of l, then A and C are on the same side of l.

Here is the question [(B)]:

- (a) State the definitions of "opposite side" and "same side" that are in effect in Axiom B-4.
- (b) Explain how Axiom B-4 (unlike the definitions you just stated) defines a "side" and shows that a line has exactly two sides.

[See Greenberg, pp. 110–112, and notes, pp. 23–24. You could use the language of equivalence relations and partitions, or not.]

5. (15 pts.) State the crossbar theorem and draw a sketch to illustrate it.

[See Greenberg, p. 116. The relevant sketch is the one at the bottom of the page.]

467A-S19

6. (Essay – 20 pts.) IMPROVEMENTS IN THE REWRITE GET ONLY HALF CREDIT. E.G., IF YOUR INITIAL SCORE IS 16, YOUR FINAL SCORE WON'T EXCEED 18.

Let S be a set. Recall that an equivalence relation on S is a binary relation \sim with the properties (for all A, B, C in S)

- (1) reflexivity: $A \sim A$,
- (2) symmetry: $A \sim B \Rightarrow B \sim A$,
- (3) transitivity: $A \sim B \wedge B \sim C \Rightarrow A \sim C$.

Recall also that a partition of S is a collection $\{S_i\}$ of subsets of S with the properties

- (4) disjointness: $S_i \cap S_j = \emptyset$ if $i \neq j$,
- (5) exhaustiveness: $S \stackrel{\cdot}{=} \bigcup_i S_i$.

Show that, given a partition of \mathcal{S} , the definition

 $A \sim B \iff A$ and B belong to the same S_i

defines an equivalence relation on S. Then show that, conversely, every equivalence relation on S determines a partition of S.