
The number of degrees of freedom of a gauge theory

(Addendum to the discussion on pp. 59–62 of notes)

Let us work in the Fourier picture (Remark, p. 61 of notes). In a general gauge, the
Maxwell equation for the vector potential is

−∂µ∂µAα + ∂α∂µAµ = Jα. (1)

Upon taking Fourier transforms, this becomes

kµkµAα
− kαkµAµ = Jα, (1′)

where ~A and ~J are now functions of the 4-vector ~k. (One would normally denote the
transforms by a caret (Âα, etc.), but for convenience I won’t.) The field strength tensor is

Fαβ = ∂αAβ
− ∂βAα, (2)

or
Fαβ = ikαAβ

− ikβAα. (2′)

The relation between field and current is (factor 4π suppressed)

Jα = ∂βFαβ, (3)

or
Jα = ikµFαµ. (3′)

Of course, (2′) and (3′) imply (1′).
(1′) can be written in matrix form as

~J = M ~A, (4)

M(~k) = kµkµ I − ~k ⊗ k̃ =









~k2 − k0k0 −k0k1 −k0k2 −k0k3

−k1k0
~k2 − k1k1 −k1k2 −k1k3

−k2k0 −k2k1
~k2 − k2k2 −k2k3

−k3k0 −k3k1 −k3k2
~k2 − k3k3









(5)

Consider a generic ~k (not a null vector). Suppose that ~A is a multiple of ~k :

Aa(~k) = kαχ(~k). (6′)

Then it is easy to see that ~A is in the kernel (null space) of M(~k) ; that is, it yields
~J(~k) = 0. (In fact, by (2′) it even yields a vanishing F .) Conversely, every vector in the
kernel is of that form, so the kernel is a one-dimensional subspace. Back in space-time,
these observations correspond to the fact that a vector potential of the form

~A = ∇χ (6)
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is “pure gauge”. This part of the vector potential obviously cannot be determined from ~J

and any initial data by the field equation, since it is entirely at our whim. (Even if the
Lorenz gauge condition is imposed, we can still perform a gauge transformation with χ a
solution of the scalar wave equation.)

Now recall a fundamental theorem of finite-dimensional linear algebra: For any linear

function, the dimension of the kernel plus the dimension of the range equals the dimension

of the domain. In particular, if the dimension of the domain equals the dimension of
the codomain (so that the linear function is represented by a square matrix), then the
dimension of the kernel equals the codimension of the range (the number of vectors that
must be added to a basis for the range to get a basis for the whole codomain). Thus, in

our situation, there must be a one-dimensional set of vectors ~J that are left out of the
range of M(~k). Taking the scalar product of ~k with (1′), we see that

kαJα = 0 (7′)

is the necessary (and sufficient) condition for (4) to have a solution, ~A. In space-time, this
condition is the conservation law,

∂αJα = 0. (7)

(7′) can be solved to yield

ρ = −
k · J

k0

. (8′′)

In terms of ~A, the right-hand side of (8′′) cannot contain k0
2 (since (1′) is quadratic

in ~k); that is, the Fourier transform of (8′′) is a linear combination of components of the
field equation that does not contain second-order time derivatives. In fact, a few more
manipulations show that

ρ = ik · E, (8′)

whose transform is
ρ = ∇ · E. (8)

That is, the conservation law is essentially equivalent (up to the “swindle” mentioned in
the Remark) to the Gauss law, which is a constraint on the allowed initial data (including

first-order time derivatives) for ~A.

Conclusion: At each ~k (hence at each space-time point) there are only two independent
physical degrees of freedom, not four or even three. One degree of freedom is lost to the
gauge ambiguity; another is cut out of the space of candidate solutions by the constraint
related to the conservation law. But by Noether’s theorem, the conservation law is itself
a consequence of the gauge invariance. In the Fourier picture the fact that degrees of
freedom are lost in pairs is consequence of the dimension theorem for linear functions.
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