
On the Relation between Inversion and Index Swapping

In special relativity, Schutz writes
{

Λβ
ᾱ

}

for the matrix of the coordinate transfor-
mation inverse to the coordinate transformation

xᾱ = Λᾱ
β xβ . (∗)

However, one might want to use that same notation for the transpose of the matrix obtained
by raising and lowering the indices of the matrix in (∗):

Λᾱ
β = gᾱµ̄Λµ̄

νgνβ .

Here
{

gαβ

}

and
{

gᾱβ̄

}

are the matrices of the metric of Minkowski space with respect to
the unbarred and barred coordinate system, respectively. (The coordinate transformation
(∗) is linear, but not necessarily a Lorentz transformation.) Let us investigate whether
these two interpretations of the symbol Λβ

ᾱ are consistent.

If the answer is yes, then (according to the first definition) δᾱ
γ̄ must equal

Λᾱ
βΛγ̄

β ≡ Λᾱ
β

(

gγ̄µ̄Λµ̄
νgνβ

)

= gγ̄µ̄

(

Λµ̄
νgνβΛᾱ

β

)

= gγ̄µ̄gµ̄ᾱ

= δᾱ
γ̄ , Q.E.D.

(The first step uses the second definition, and the next-to-last step uses the transformation
law of a

(

2

0

)

tensor.)

In less ambiguous notation, what we have proved is that

(

Λ−1
)β

ᾱ = gᾱµ̄Λµ̄
νgνβ . (†)

Note that if Λ is not a Lorentz transformation, then the barred and unbarred g matrices
are not numerically equal; at most one of them in that case has the form

η =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






.

If Λ is Lorentz (so that the g matrices are the same) and the coordinates are with respect
to an orthogonal basis (so that indeed g = η), then (†) is the indefinite-metric counterpart
of the “inverse = transpose” characterization of an orthogonal matrix in Euclidean space:
The inverse of a Lorentz transformation equals the transpose with the indices raised and
lowered (by η). (In the Euclidean case, η is replaced by δ and hence (†) reduces to

(

Λ−1
)β

ᾱ = Λᾱ
β ,

1



in which the up-down index position has no significance.) For a general linear transfor-
mation, (†) may appear to offer a free lunch: How can we calculate an inverse matrix
without the hard work of evaluating Cramer’s rule, or performing a Gaussian elimination?
The answer is that in the general case at least one of the matrices

{

gᾱµ̄

}

and
{

gνβ
}

is
nontrivial and somehow contains the information about the inverse matrix.

Alternative argument: We can use the metric to map between vectors and covectors.
Since

vᾱ = Λᾱ
βvβ

is the transformation law for vectors, that for covectors must be

ṽµ̄ = gµ̄ᾱvᾱ

= gµ̄ᾱΛᾱ
βvβ

= gµ̄ᾱΛᾱ
βgβν ṽν

≡ Λµ̄
ν ṽν

according to the second definition. But the transformation matrix for covectors is the
transpose of the inverse of that for vectors — i.e.,

ṽµ̄ = Λν
µ̄ṽν

according to the first definition. Therefore, the definitions are consistent.
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