Solutions to Exercises 2.19 and 2.21

2.19(a), Method 1a (credit John Cesar and others): We are given that \vec{a} has constant spatial direction, so its spatial components at any time are the same as at any other time except possibly for an overall multiplicative constant:

$$
\vec{a}\left(t_{1}\right)=\left(a^{0}, a^{1}, a^{2}, a^{3}\right), \quad \vec{a}\left(t_{2}\right)=\left(b^{0}, C a^{1}, C a^{2}, C a^{3}\right)
$$

According to (2.32), $\vec{U} \cdot \vec{a}=0$; it follows that in the body's MCRF, $a^{0}=0=b^{0}$. But we also are given that \vec{a} always has the same magnitude, so we get

$$
a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=C^{2}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right) .
$$

Thus $|C|=1$, and to preserve direction $C=+1$. Thus at all times

$$
\vec{a}(t)=\left(0, a^{1}, a^{2}, a^{3}\right) \quad \text { in MCRF }
$$

and its spatial part is the Galilean acceleration.
Method $1 b$ (credit Sean Grant and others):

$$
\begin{gathered}
\vec{U}=\frac{d \vec{x}}{d \tau}=\gamma\left(1, \frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right) . \\
\vec{a}=\frac{d \vec{U}}{d \tau}=\gamma\left[\frac{d \gamma}{d t}\left(1, \frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)+\gamma\left(0, \frac{d^{2} x}{d t^{2}}, \frac{d^{2} x}{d t^{2}}, \frac{d^{2} x}{d t^{2}}\right)\right] \\
=\gamma\left[\frac{d \gamma}{d t}\binom{1}{\mathbf{v}}+\gamma\binom{0}{\mathbf{a}}\right]
\end{gathered}
$$

where \mathbf{a} is the Galilean acceleration. Furthermore,

$$
\gamma=\left(1-v^{2}\right)^{-1 / 2} \Rightarrow \frac{d \gamma}{d t}=v \frac{d v}{d t}\left(1-v^{2}\right)^{-3 / 2}
$$

If we are in the MCRF, $\gamma=1$ and $\mathbf{v}=0$ and hence $\frac{d \gamma}{d t}=0$. So we end up with

$$
\vec{a}=\binom{0}{\mathbf{a}} \quad \text { in MCRF }
$$

Method 2: Do 2.21 first.

$$
\frac{d}{d \lambda}\binom{t}{x}=\binom{\cosh (\lambda / a)}{\sinh (\lambda / a)} \equiv \vec{U}
$$

Note that $\vec{U} \cdot \vec{U}=-1$, so we can identify \vec{U} as the 4 -velocity and λ as the proper time. Then

$$
\frac{d}{d \tau} \vec{U}=\frac{d^{2}}{d \lambda^{2}}\binom{t}{x}=\frac{1}{a}\binom{\sinh (\tau / a)}{\cosh (\tau / a)},
$$

which has constant magnitude a^{-2} (and constant spatial direction, since we're considering only one spatial dimension). Thus this worldline has uniform acceleration, $\alpha=1 / a$, The Lorentz transformation into the MCRF (mapping \vec{U} to $(1,0)$) is

$$
\Lambda=\left(\begin{array}{cc}
\cosh (\lambda / a) & -\sinh (\lambda / a) \tag{1}\\
-\sinh (\lambda / a) & \cosh (\lambda / a)
\end{array}\right)
$$

Applied to \vec{a}, Λ yields

$$
\frac{1}{a}\binom{0}{1}=\binom{0}{\alpha}
$$

which again proves 2.19 (a). (Clearly this worldline can be embedded into 4 -dimensional space-time, the two extra dimensions remaining inert. Any other uniform-acceleration worldline can be put into this form by rotation and translation of coordinates.)
2.19(b), Method 1: Use Ex. 2.21. Without loss of generality we can write

$$
\begin{gathered}
t=\frac{1}{\alpha} \sinh (\alpha \tau), \quad x=\frac{1}{\alpha} \cosh (\alpha \tau) \\
\vec{U}=\binom{\cosh (\alpha \tau)}{\sinh (\alpha \tau)}=\binom{\gamma}{\gamma v} \Rightarrow v=\frac{\sinh (\alpha \tau)}{\cosh (\alpha \tau)}=\tanh (\alpha \tau)
\end{gathered}
$$

Solving, we have

$$
\tau=\frac{1}{\alpha} \sinh ^{-1}(\alpha t)
$$

and hence

$$
\begin{equation*}
v=\tanh \left(\sinh ^{-1}(\alpha t)\right) \tag{2}
\end{equation*}
$$

We can get rid of the hyperbolic functions:

$$
\begin{align*}
v & =\frac{\sinh \left(\sinh ^{-1}(\alpha t)\right)}{\cosh \left(\sinh ^{-1}(\alpha t)\right)} \\
& =\frac{\alpha t}{\sqrt{1+(\alpha t)^{2}}} \tag{3}
\end{align*}
$$

The inverse equation inverse to (3) (needed to answer the numerical question) is

$$
t=\frac{1}{\alpha} \frac{v}{\sqrt{1-v^{2}}}
$$

The change in x is

$$
\Delta x=\frac{1}{\alpha} \cosh (\alpha \tau)-\frac{1}{\alpha}
$$

$($ note that $x(0)=1 / \alpha, \operatorname{not} 0)$, so

$$
\Delta x=\frac{1}{\alpha}\left[\cosh \left(\sinh ^{-1}(\alpha t)\right)-1\right]=\frac{1}{\alpha}\left[\sqrt{1+(\alpha t)^{2}}-1\right] .
$$

For $\alpha=10 \mathrm{~m} / \mathrm{s}^{2}=\frac{1}{3} \times 10^{-7} \mathrm{~s}^{-1}$ and $v=0.999$, one gets $t \approx \frac{2}{3} \times 10^{9} \mathrm{~s} \approx 20$ years. (A convenient fact to remember is that 1 year $\approx \pi \times 10^{7}$ seconds.) (Numerical answers on student papers were all over the lot, even among those who had the correct formulas.)

Method 2(a) (credit Robert DeAlba and others): (I suppress the two transverse dimensions.) Transform

$$
\vec{U}=\binom{1}{0} \quad \text { and } \quad \vec{a}=\binom{0}{\alpha}
$$

from the MCRF back to the inertial frame by [in notation set by (1)]

$$
\Lambda^{-1}=\left(\begin{array}{cc}
\cosh (\lambda / a) & \sinh (\lambda / a) \\
\sinh (\lambda / a) & \cosh (\lambda / a)
\end{array}\right)
$$

getting

$$
\vec{U}=\binom{\gamma}{\gamma v}, \quad\binom{v \gamma \alpha}{\gamma \alpha}=\vec{a}=\frac{d \vec{U}}{d \tau} .
$$

Thus

$$
\frac{d \gamma}{d \tau}=v \gamma \alpha, \quad \frac{d}{d \tau}(\gamma v)=\gamma \alpha
$$

From either of these equations and the definition of γ you get after several steps of calculus and algebra

$$
\alpha=\gamma^{2} \frac{d v}{d \tau} .
$$

Therefore,

$$
\begin{gather*}
\alpha \int d \tau=\int \gamma^{2} d v=\int \frac{d v}{1-v^{2}}, \\
\alpha \tau=\tanh ^{-1} v \Rightarrow v=\tanh (\alpha \tau) . \tag{4}
\end{gather*}
$$

Since

$$
v=\frac{d x}{d t}=\frac{d x / d \tau}{d t / d \tau} \equiv \frac{U^{1}}{U^{0}}
$$

and \vec{U} is normalized to -1 , it follows that

$$
\vec{U}=\binom{\cosh (\alpha \tau)}{\sinh (\alpha \tau)} .
$$

Hence

$$
\frac{d t}{d \tau}=U^{0}=\cosh (\alpha \tau)=\Rightarrow t=\frac{1}{\alpha} \sinh (\alpha \tau)
$$

so (2) follows from (4) and you can proceed as in Method 1.
There were several variations on this theme that somehow led directly to (3) without going through (2).
2.19(c): In either approach above, we already know the relations among τ, t, and x. From $\tau=\alpha^{-1} \sinh ^{-1}(\alpha t)$ and the numerical values of α and t above, we get $\tau=$ $1.14 \times 10^{8} \mathrm{~s}=3.6$ years. Then from either formula for Δx above we get $\Delta x=6.37 \times 10^{8} \mathrm{~s}=$ $1.9 \times 10^{17} \mathrm{~m}$.

For the center of the galaxy, we have $\Delta x=6.7 \times 10^{11} \mathrm{~s}$ and

$$
\tau=\frac{1}{\alpha} \cosh ^{-1}(1+\alpha \Delta x)=3.2 \times 10^{8} \mathrm{~s} \approx 10 \text { years }
$$

