
Solutions to Exercises 2.19 and 2.21

2.19(a), Method 1a (credit John Cesar and others): We are given that ~a has constant
spatial direction, so its spatial components at any time are the same as at any other time
except possibly for an overall multiplicative constant:

~a(t1) = (a0, a1, a2, a3), ~a(t2) = (b0, Ca1, Ca2, Ca3).

According to (2.32), ~U · ~a = 0 ; it follows that in the body’s MCRF, a0 = 0 = b0. But we
also are given that ~a always has the same magnitude, so we get
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2).

Thus |C| = 1, and to preserve direction C = +1. Thus at all times

~a(t) = (0, a1, a2, a3) in MCRF,

and its spatial part is the Galilean acceleration.

Method 1b (credit Sean Grant and others):
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where a is the Galilean acceleration. Furthermore,

γ = (1 − v2)−1/2 ⇒ dγ

dt
= v

dv

dt
(1 − v2)−3/2.

If we are in the MCRF, γ = 1 and v = 0 and hence dγ
dt

= 0. So we end up with
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)

in MCRF.

Method 2: Do 2.21 first.
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Note that ~U · ~U = −1, so we can identify ~U as the 4-velocity and λ as the proper time.
Then
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which has constant magnitude a−2 (and constant spatial direction, since we’re considering
only one spatial dimension). Thus this worldline has uniform acceleration, α = 1/a, The

Lorentz transformation into the MCRF (mapping ~U to (1, 0)) is

Λ =

(

cosh(λ/a) − sinh(λ/a)
− sinh(λ/a) cosh(λ/a)

)

. (1)

Applied to ~a, Λ yields
1
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,

which again proves 2.19(a). (Clearly this worldline can be embedded into 4-dimensional
space-time, the two extra dimensions remaining inert. Any other uniform-acceleration
worldline can be put into this form by rotation and translation of coordinates.)

2.19(b), Method 1: Use Ex. 2.21. Without loss of generality we can write

t =
1

α
sinh(ατ), x =

1

α
cosh(ατ),

~U =
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⇒ v =
sinh(ατ)
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= tanh(ατ).

Solving, we have

τ =
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sinh−1(αt)

and hence
v = tanh
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)

. (2)

We can get rid of the hyperbolic functions:

v =
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=
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. (3)

The inverse equation inverse to (3) (needed to answer the numerical question) is
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.

The change in x is
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α

(note that x(0) = 1/α, not 0), so
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For α = 10 m/s
2

= 1

3
× 10−7 s−1 and v = 0.999, one gets t ≈ 2

3
× 109 s ≈ 20 years.

(A convenient fact to remember is that 1 year ≈ π × 107 seconds.) (Numerical answers on

student papers were all over the lot, even among those who had the correct formulas.)

Method 2(a) (credit Robert DeAlba and others): (I suppress the two transverse dimen-
sions.) Transform

~U =

(

1
0

)

and ~a =

(

0
α

)

from the MCRF back to the inertial frame by [in notation set by (1)]

Λ−1 =

(
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sinh(λ/a) cosh(λ/a)

)

,

getting

~U =
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γ
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)

,
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= ~a =
d~U

dτ
.

Thus
dγ

dτ
= vγα,

d

dτ
(γv) = γα.

From either of these equations and the definition of γ you get after several steps of calculus
and algebra

α = γ2
dv

dτ
.

Therefore,

α

∫

dτ =

∫
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∫
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1 − v2
,

ατ = tanh−1 v ⇒ v = tanh(ατ). (4)

Since

v =
dx

dt
=

dx/dτ

dt/dτ
≡ U1

U0

and ~U is normalized to −1, it follows that

~U =

(

cosh(ατ)
sinh(ατ)

)

.

Hence
dt

dτ
= U0 = cosh(ατ) = ⇒ t =

1

α
sinh(ατ),

so (2) follows from (4) and you can proceed as in Method 1.

There were several variations on this theme that somehow led directly to (3) without going

through (2).

3



2.19(c): In either approach above, we already know the relations among τ , t, and x.

From τ = α−1 sinh−1(αt) and the numerical values of α and t above, we get τ =
1.14×108 s = 3.6 years. Then from either formula for ∆x above we get ∆x = 6.37×108 s =
1.9 × 1017 m.

For the center of the galaxy, we have ∆x = 6.7 × 1011 s and

τ =
1

α
cosh−1(1 + α∆x) = 3.2 × 108 s ≈ 10 years.
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