Solutions to Exercises 2.19 and 2.21

2.19(a), Method 1a (credit John Cesar and others): We are given that @ has constant
spatial direction, so its spatial components at any time are the same as at any other time
except possibly for an overall multiplicative constant:

a(ty) = (ao,al,aQ,a?’), a(ty) = (b0,0a1,0a2,0a3).

According to (2.32), U-d@=0; it follows that in the body’s MCRF, a® = 0 = °. But we
also are given that @ always has the same magnitude, so we get

a12 + CL22 + a32 = 02(a12 + a22 + a32).
Thus |C| =1, and to preserve direction C' = +1. Thus at all times
a(t) = (0,a',a?,a*) in MCRF,

and its spatial part is the Galilean acceleration.
Method 1b (credit Sean Grant and others):
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where a is the Galilean acceleration. Furthermore,
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N = (1_02>—1/2 - (1_02)—3/2‘

If we are in the MCRF, v =1 and v = 0 and hence ‘Cll—z = 0. So we end up with
- 0 .
a= ( ) in MCRF.
a
Method 2: Do 2.21 first.
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Note that U - U = —1, so we can identify U as the 4-velocity and A\ as the proper time.

Then
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which has constant magnitude a~2 (and constant spatial direction, since we're considering
only one spatial dimension). Thus this worldline has uniform acceleration, a = 1/a, The
Lorentz transformation into the MCRF (mapping U to (1,0)) is

_ ( cosh(Ma) —sinh()\/a)
A= (—sinh(A/a> cosh(\/a) ) (1)

(1)=(2)

which again proves 2.19(a). (Clearly this worldline can be embedded into 4-dimensional
space-time, the two extra dimensions remaining inert. Any other uniform-acceleration
worldline can be put into this form by rotation and translation of coordinates.)

Applied to a, A yields

2.19(b), Method 1: Use Ex. 2.21. Without loss of generality we can write

1 1
t = — sinh = — cosh
 sin (aT), T = — cos (ar),
G (coshlen)y _ (v L, _siohlor) o
sinh(ar) YU cosh(ar)

Solving, we have

1
= = sinh ™! (at
T=—sin (at)

and hence
v = tanh(sinh_l(at)). (2)

We can get rid of the hyperbolic functions:

sinh(sinh ™! (at))
cosh(sinh ™ (at))
at

N V1+ () 3)

The inverse equation inverse to (3) (needed to answer the numerical question) is

The change in x is

(note that z(0) = 1/a, not 0), so

Az = é[cosh(sinh_l(at)) —1] = é[ 1+ (at)? —1].



For a = 10 m/s2 = é x 1077 s71 and v = 0.999, one gets t ~ % x 10% s ~ 20 years.
(A convenient fact to remember is that 1 year ~ 7 x 107 seconds.) (Numerical answers on
student papers were all over the lot, even among those who had the correct formulas.)

Method 2(a) (credit Robert DeAlba and others): (I suppress the two transverse dimen-
sions.) Transform

from the MCRF back to the inertial frame by [in notation set by (1)]

1 (cosh(A/a) sinh(\/a)
A= (sinh()\/a) cosh()\/a)) ’

getting

Thus

From either of these equations and the definition of v you get after several steps of calculus
and algebra

o= L
=7 dr -’
Therefore,
d
a/dT:/’YZdvzfl_vvgv
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and U is normalized to —1, it follows that
i — cpsh(on') '
sinh(art)

dt 1
e U% = cosh(ar) == t = o sinh(art),

Hence

so (2) follows from (4) and you can proceed as in Method 1.

There were several variations on this theme that somehow led directly to (3) without going
through (2).



2.19(c): In either approach above, we already know the relations among 7, ¢, and z.

From 7 = a~'sinh™!(at) and the numerical values of o and ¢ above, we get 7 =
1.14x 10® s = 3.6 years. Then from either formula for Az above we get Az = 6.37x10% s =
1.9 x 10'" m.

For the center of the galaxy, we have Az = 6.7 x 10! s and

1
7= =cosh (14 aAz) = 3.2 x 10% s ~ 10 years.
«



