
Adjoints (Sec. 18)

Adjoints are defined only when there is an inner product!

The adjoint of A is a linear operator, A∗, such that

~u · (A~v) = (A∗~u) · ~v — or 〈~u,A~v〉 = 〈A∗~u,~v〉.

More precisely:

Definition: Let V and U be inner product spaces (possibly the same!), and A : V → U
be linear. Consider a (temporarily) fixed ~u ∈ U . Suppose there exists a ~w ∈ V such that

(A~v) · ~u = ~v · ~w, ∀~v ∈ V.

Then ~w is denoted by A∗~u. [~w is unique if it exists, since ~v · ~w1 = ~v · ~w2 ∀~v ∈ V ⇒
~v · (~w1− ~w2) = 0 ∀~v ⇒ ~w1 = ~w2 by Ex. 12.5.] This construction defines an operator A∗

whose domain is the subset of ~u ∈ U for which such ~w’s exist, and whose codomain is V.

V
A
⇀↽
A∗

U

Remark: When we get to linear functionals (Chap. 7), we’ll see that dom A∗ = all of U
if

i) V and U are finite-dimensional, or

ii) V and U are infinite-dimensional Hilbert spaces, and A is a bounded (= continuous)
operator.

Theorem. dom A∗ is a subspace of U , and A∗ is linear.

Proof: Suppose ~w1 = A∗~u1, ~w2 = A∗~u2. Then

~v · (λ~w1 + ~w2) = λ~v · ~w1 + ~v · ~w2 = λ(A~v) · ~u1 + (A~v) · ~u2 = (A~v) · (λ~u1 + ~u2).

Thus A∗(λ~u1 + ~u2) exists and equals λ~w1 + ~w2, QED.

Theorem 18.1′. Let V and U be finite-dimensional. Then, with respect to orthonormal
bases, the matrix of A∗ is [the complex conjugate of] the transpose of the matrix of A.
More precisely, let {Aj

k} ≡ {Ajk} be the matrix representing A with respect to given ON
bases for V and U . Then the matrix of A∗ is {(A∗)jk} = {Akj}.
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Remark: In {Aj
k}, k runs from 1 to dim V ≡ n,

j runs from 1 to dim U ≡ m.
In {(A∗)jk}, k runs from 1 to m,

j runs from 1 to n.

Another convention, which is more lucid in certain respects, is to associate the same index
letter always with the same space (say j with U and k with V). (Bowen & Wang do
that.) Here, I have chosen the convention which points up the transposition property most
sharply.

Proof: Since the bases are fixed, the theorem reduces to a statement about linear maps
between Fn and Fm. With this identification,

(A~v)j = Aj
k v

k, [summation implied]

(A~v) · ~u = uj Aj
k v

k = (Aj
k uj) v

k = ~v · ~w,

where wk = Aj
k u

j . Since ~w ≡ A∗~u, this says that (A∗)kj = Aj
k. Interchanging the

meaning of j and k (cf. Remark!), we obtain the formula stated in the theorem.

Theorem 18.2. Among other properties (see book),

(b) (AB)∗ = B∗A∗, (c) (λA)∗ = λA∗,
(f) (A∗)∗ = A, (g) (A∗)−1 = (A−1)∗.

(In each case we make the obvious technical assumptions, such as that dom A∗ = codom A,
that A−1 exists in (g), etc. For unbounded operators in infinite-dimensional Hilbert spaces,
the domain of (A∗)∗) can be larger than the domain of A , so (f) is false in that case.)

Proof of (b): B : V → U , A : U → W. Therefore B∗ : U → V, A∗ : W → U , so
B∗A∗ makes sense (W → V) — whereas A∗B∗ generally doesn’t.

~v · (B∗A∗ ~w) = (B~v) · (A∗ ~w) = (AB~v) · ~w (∀~v ∈ V, ∀~w ∈ W).

Thus B∗A∗ ~w = (AB)∗ ~w, QED.

Proof of (g): A : V → U is assumed invertible. Note:

A∗ : U → V, A−1 : U → V, A∗
−1

: V → U .

Let B = A−1 in (b): (A−1)∗A∗ = (AA−1)∗ = 1∗ = 1, and similarly A∗(A−1)∗ = 1.
Therefore (A∗)−1 exists and equals (A−1)∗.
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Theorem 18.3′. A : V → U linear ⇒

(1) ker A∗ = (ran A)⊥ (⊂ U)

(2) ker A = (ran A∗)⊥ (⊂ V) (in finite dimensions, or under other conditions that
guarantee A∗∗ = A.)

Proof:

(1) ~u ∈ (ran A)⊥ ⇐⇒ ∀~v ∈ V, 0 = ~u · (A~v) = (A∗~u) · ~v ⇐⇒ A∗~u = ~0 (Ex. 12.5) ⇐⇒
~u ∈ ker A∗.

(2) Let A in (1) be A∗; use A∗∗ = A.

Corollary 1 (Theorem 18.3). If ran A is a closed set (always true if ran A is finite-
dimensional), then

ran A = (ker A∗)⊥

and
U = ker A∗ ⊕ ran A.

(Cf. Theorem 13.4′ and following remarks in notes.) Similarly, V = ker A⊕ ran A∗.

Corollary 2. If ran A is closed, A~v = ~b has solutions iff ~b is orthogonal to every solution
of A∗~u = ~0.

Recall that in finite-dimensional calculations with orthogonal bases, A∗ will be repre-
sented by the complex-conjugate transpose of the matrix A.

Theorem 18.4. V finite-dimensional ⇒ A and A∗ have the same rank. (In matrix
terms: The column rank of A equals the row rank of A.)

Proof: Corollary 1 ⇒ dimV = dim ker A+ dim ran A∗. (†)
Theorem 15.8 ⇒ dimV = dim ker A+ dim ran A. Thus dim ran A∗ = dim ran A.

Corollary 3 (Finite-dimensional Index Theorem).

dim ker A− dim ker A∗ ≡ index A

= dimV − dimU , ∀A ∈ L(V;U).

Proof: Theorem 15.8 ⇒ dimU = dim ker A∗+dim ran A∗. Subtract this equation from
(†) above.
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Corollary 4 (Finite-dimensional Fredholm Alternative Theorem). Let dimV =
dimU <∞. Then either

(A) A~v = ~b is solvable, uniquely, for all ~b, or

(B) A~v = ~0 has k linearly independent nontrivial solutions (k 6= 0);
A∗~u = ~0 also has k nontrivial solutions {~u1, . . . , ~uk}; and

A~v = ~b has solutions (nonunique) iff ~b is orthogonal to {~u1, . . . , ~uk}.

Special case: V = U , A∗ = A. Then A~v = ~b is solvable iff ~b is orthogonal to all the
solutions of A~v = ~0.

Corollary 1 leads to similar “alternative theorems” for certain classes of operators on
infinite-dimensional Hilbert spaces. The next few lectures will discuss, nonrigorously, some
examples.

Example 1: Fredholm integral operators

Reference: I. Stakgold, Green’s Functions and Boundary Value Problems (Wiley, 1979),
Chaps. 5 and 6.

Let K(x, y) be a continuous function on the square a ≤ x, y ≤ b (|a|, b < ∞). [This
condition is stronger than necessary.] Consider the equation

f(x)−
∫ b

a

K(x, y) f(y) dy = g(x), (∗)

(g given, f to be found.)

Fredholm Alternative Theorem. Either

(A) (∗) has exactly one solution for each g ∈ L2(a, b). (In particular, g = 0 ⇒ f = 0.)

or

(B) (∗) with g = 0 has k linearly independent solutions (k <∞); then the equation

u(y)−
∫ b

a

K(x, y)u(x) dx = 0 (∗∗)

also has k solutions, and (∗) has solutions iff g is orthogonal to all of the latter.

In more abstract notation: Let K be the operator defined by

[Kf ](x) ≡
∫ b

a

K(x, y) f(y) dy.
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Then the adjoint K∗ is given by

[K∗u](y) =

∫ b

a

K(x, y)u(x) dx

(i.e., the function K(x, y) acts exactly like a matrix). The theorem says that

dim ker (1−K) = dim ker (1−K∗) <∞,

and that (1−K)f = g is solvable [i.e., g ∈ ran (1−K)] if and only if

g · h ≡
∫ b

a

g(x)h(x) dx = 0, ∀h ∈ ker (1−K∗).

(This last part is equivalent to saying that ran (1−K) is closed; cf. Corollary 1.)

Proof omitted.

A practical consequence of this theorem is that if a uniqueness theorem can be proved
for the integral equation in question, then one knows that alternative (A) applies, and
therefore a solution exists for all g. Since uniqueness proofs are usually easier than existence
proofs, this property can be quite valuable.

The theorem can be extended to the case where x and y vary over a bounded domain
in Rn (rather than a bounded interval in R). Certain differential equations plus boundary
conditions can be converted into integral equations of this type, as we’ll see next.

Fredholm operators: The terminology in the literature is somewhat ambiguous:
An “operator of Fredholm type” is not the same thing as an operator for which the “Fred-
holm alternative” holds. A Fredholm operator in the latter, narrower, sense is one of the
form A = 1 + K, where K is compact. I will not be able to define “compact” in this
course; suffice it to say that this is the property which the boundedness of the interval in
the foregoing example was sufficient to ensure. For such an operator it can be proved that
dim kerA = dim kerA∗ < ∞ (i.e., index A = 0), and also that ran A is closed. There-
fore, the Fredholm alternative holds; “Uniqueness implies Existence.” These operators are
analogous to finite-dimensional operators represented by square matrices, as described in
Corollary 4. Note that the domain and codomain must be the same space (or at least
isomorphic) so that the identity operator is defined.

An operator A is said to be of Fredholm type if there is an operator B such that
BA = 1 + K1 and AB = 1 + K2 for some compact K1 and K2. For these operators
it can be shown that ran A is closed, and that dim kerA < ∞, dim kerA∗ < ∞ (i.e.,
index A is defined and finite, but not necessarily zero). These operators are analogous to
operators between finite-dimensional spaces whose dimensions are not necessarily the same
— i.e., operators represented by rectangular matrices — as described in the propositions
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preceding Corollary 4. The domain and codomain of A don’t have to be the same in this
case.

Fredholm operators — a summary

Setting: domain = codomain domain 6= codomain
(A an endomorphism) (A a linear map)

Index: zero integer (maybe zero)

Finite dimensions: square matrix rectangular matrix

Infinite-dimensional A = 1 +K, ∃B:BA = 1 +K1 ,
Hilbert space: K compact AB = 1 +K2 ,

K1 ,K2 compact

Conclusions: dim ker A = dim ker A∗ dim ker A <∞
dim ker A <∞ dim ker A∗ <∞
ran A closed ran A closed

Terminology: Fredholm alternative Operator of
holds Fredholm type

Example 2: An ordinary differential operator

Recall that in homework we saw that

Af(t) ≡ f ′′(t) + ω2f(t) = g(t), 0 < t < 1,

f(0) = 0 = f(1), (C1)

has solutions if and only if g is orthogonal to the solution (if any) of the corresponding
homogeneous problem; that is, if ω = nπ, then∫ 1

0

g(t) sinnπt dt = 0

is necessary (and sufficient) for solvability. (We assume g ∈ L2(0, 1) at worst.) This cries
out to be interpreted as an example of the theorem that ran A = (ker A∗)⊥ (or, at least,

ran A ⊆ ran A = (ran A)⊥⊥ = (ker A∗)⊥,

where the overlining indicates the topological closure of the set (i.e., its limit points are
added); this weaker condition, which was all that Theorem 18.3′ gave us in general, indi-
cates the necessity but not the sufficiency of such an orthogonality condition).

A rigorous treatment of this example is too technical to get into here, largely because
A is an unbounded (discontinuous) operator, which can’t even be defined on all of the
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Hilbert space L2(0, 1). Suffice it to say that the adjoint of such an operator (including
the boundary condition (C1) as part of the definition of the operator, since it restricts the
domain) can be defined, and that in this case, if ω2 ∈ R, one can show

A∗ = A.

Thus ran A ⊆ (ker A)⊥ (in fact, they are equal), as we observed by direct calculation in
the exercise.

Remark: A∗ = A is related to, but stronger than, the fact that

h · (Af) = (Ah) · f

for all h and f satisfying (C1). This is proved by integration by parts, the BC being needed
to make the endpoint terms vanish.

Alternative approach to this example: Suppose we didn’t know anything
about trigonometric functions, but did know how to solve the ODE in the case ω = 0:

f ′′(t) = g(t), f(0) = 0 = f(1).

Answer: f(t) =

∫ 1

0

K(t, s) g(s) ds,

K(t, s) ≡
{
s(t− 1) for s ≤ t,
t(s− 1) for s ≥ t.

Check: t = s ⇒ consistency. f(0) = 0, f(1) = 0.

f ′(t) =
d

dt

[∫ t

0

s(t− 1) g(s) ds+

∫ 1

t

t(s− 1) g(s) ds

]
=

∫ t

0

s g(s) ds+

∫ 1

t

(s− 1) g(s) ds.

f ′′(t) = t g(t)− (t− 1) g(t) = g(t).

Apply this to our original equation by replacing g by g − ω2f :

f(t) =

∫ 1

0

K(t, s) g(s) ds− ω2

∫ 1

0

K(t, s) f(s) ds.

This is not a solution, since f still appears in the right-hand side. It is a Fredholm integral
equation for f :

f(t) +

∫ 1

0

ω2K(t, s) f(s) ds =

∫ 1

0

K(t, s) g(s) ds
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is of the form
(1 + ω2K) f(t) = h(t).

So the Fredholm alternative theorem applies: Note that K(t, s) = K(s, t), so K∗ = K.

Therefore solutions f exist
(
h ∈ ran (1 +ω2K)

)
iff h ⊥ ker (1 +

(

ω2
)

K). The elements of
this kernel are the solutions of the original homogeneous problem (nontrivial iff ω = nπ).

A more realistic application of this idea: Consider

f ′′(t) + ω2f(t)− V (t)f(t) = g(t) with BC (C1),

where ω 6= nπ. Let K be the integral operator which solves f ′′ + ω2f = g with those
same boundary conditions. (This integral kernel was constructed in homework). Thus

f(t) =
∫ 1

0
K(t, s)g(s) ds. Replace g by g+V f to get a Fredholm integral equation equivalent

to the differential equation (+ BC) we’re interested in. Thus we can discuss existence
and uniqueness questions for this boundary-value problem without writing down explicit
solutions of f ′′ + ω2f − V f = 0 (which would be hard for general V ).

Example 3: A partial differential operator

Instead of an inhomogeneous differential equation, we can have inhomogeneous bound-
ary conditions.
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n̂

Ω

B

Let Ω ⊂ R3 be a bounded region with a smooth boundary, B. Consider the heat

equation
∂u

∂t
= ∇2u in Ω with boundary condition

∂u

∂n
(~x) = g(~x) if ~x ∈ B.

(∂u/∂n = normal derivative ≡ n̂ · ∇u.)

Physics ⇒ ∂u
∂n ∝ heat flow through B at ~x. (u = temperature.)

Let’s look for time-independent solutions. (Math. 602 ⇒ this is the complementary
problem to the time-dependent problem with ∂u

∂n = 0 on B and u(~x) given at t = 0.) We
get Laplace’s equation:

∇2u = 0 in Ω,
∂u

∂n
= g on B (g given).
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Observation: Gauss’s theorem ⇒∫
B

g dS ≡
∫
B

∇u · n̂ dS ≡
∫
B

∇u · d~S

=

∫
Ω

∇ · (∇u) d3x ≡
∫

Ω

∇2u d3x = 0.

Therefore,
∫
B
g dS = 0 is a necessary condition for existence of a solution!

Physical interpretation:
∫
B
g dS =

∫
B

∂u
∂n dS is the net heat flow out of Ω. If this

is not zero, naturally the temperature inside Ω can’t be independent of time.

More generally, for the doubly inhomogeneous problem

∇2u = j(~x) in Ω,
∂u

∂n
= g(~x) on B

one has the consistency condition ∫
B

g dS =

∫
Ω

j d3x. (#)

(Heat produced inside must balance heat flowing out.)

Fredholm-like interpretation: Consider the homogeneous problem

∇2u = 0 in Ω,
∂u

∂n
= 0 on B.

One solution of this is u = constant. (#) says the data (j, g) are orthogonal, in some sense,
to the constant solutions of the homogeneous problem.

To see this, observe that the operator we are dealing with here really is

A :
(
some domain ⊂ L2(Ω)

)
→ L2(Ω)× L2(B),

Au ≡
(
∇2u,

∂u

∂n

)
.

We endow L2(Ω) × L2(B) ∼= L2(Ω) ⊕ L2(B) with the inner product which makes it an
orthogonal direct sum: Let (f1, h1) be a generic element of the space. [Note: h1 is inde-
pendent of f1, not its boundary value.] Then define

(f1, h1) · (f2.h2) ≡
∫

Ω

f1(~x) f2(~x) d3x+

∫
B

h1(~x)h2(~x) dS.
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What is A∗?
∫

Ω
[A∗(f1, h1)](~x)u(~x) d3x

≡ [A∗(f1, h1)] · ~u = (f1.h1) · (A~u)

=

∫
Ω

f1(~x)∇2u(~x) d3x+

∫
B

h1(~x)
∂u

∂n
dS

= −
∫

Ω

∇f1 · ∇u d3x+

∫
B

f1(~x)∇u(~x) · d~S +

∫
B

h1∇u · d~S

= +

∫
Ω

∇2f1(~x)u(~x) d3x−
∫
B

u(~x) ∇f1(~x) · d~S +

∫
B

(f1 + h1)∇u · d~S.

This will be consistent only if we take

dom A∗ = { (f1, h1) : n̂ · ∇f1 = 0 on B, −f1 = h1 on B, ∇2f1 definable}

and take A∗(f1, h1) ≡ ∇2f1. [In the last clause of the description of the domain, tech-
nicalities have been suppressed. The proper domain is slightly larger than C2, as far as
smoothness in the interior of Ω is concerned.] Then

kerA∗ = { (f1, h1) : n̂ · ∇f1 = 0 on B, −f1 = h1 on B, ∇2f1 = 0 in Ω}.

This contains (in fact, consists entirely of) the constant functions (f1, h1) with h1 = −f1.
Then, finally, ran A ⊂ (kerA∗)⊥ ⇒∫

Ω

j d3x−
∫
B

g dS = 0 (#)

for any (j, g) ∈ ran A. This is what we expected.
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