
Real antisymmetric operators

This section is a bridge between the last two major topics of the course. First, we use
the Jordan canonical form theorem to derive a canonical form for antisymmetric matrices.
Then we discuss the isomorphism between antisymmetric matrices and vectors in three
dimensions, as a foretaste of the subject of general antisymmetric tensors — which we will
reach precisely as we run out of time in the course. (See Chapter 8 of Bowen & Wang.)

Canonical form

The Jordan theorem applies to complex vector spaces. When F = R, an operator
A may not have a JCF. For example, det (A − λ) may have complex roots, which can’t
possibly correspond to real eigenvectors of a real matrix.

Consider a real, antisymmetric A; that is, A∗ = −A, where the adjoint equals the
transpose since F = R. With respect to an ON basis, Aj

k = −Ak
j . The antisymmetric

matrix A of course defines an antisymmetric operator A:RN → RN . Note, however, that
this same matrix also defines an anti-Hermitian operator A

C
:CN → CN . For A

C
we

could just define B ≡ −iA
C

to get an Hermitian operator: B∗ = B [where the adjoint is
now in a complex space, hence not the same thing as a transpose]. Then B is (unitarily)
diagonalizable, with real eigenvalues {λj}. Thus AC = iB is diagonalizable, with pure
imaginary eigenvalues {iλj}.

Since the eigenvectors belong to CN , it makes sense to complex-conjugate them. [This
would not be true of an abstract Hilbert space.] Let ~vj be one of the eigenvectors:

A
C
~vj = iλj~vj .

Complex-conjugate this equation (identifying A
C

with its matrix, which is real):

A
C
~vj

∗ = −iλj~vj
∗.

Suppose for the moment that all eigenvalues of A
C
are nonzero. Then we see that they come

in complex-conjugate pairs {iλj ,−iλj} with equal multiplicities within a pair. (Henceforth
{λj} stands for that half of the original set {λj} consisting of positive numbers.)

Introduce new basis vectors

~vjR ≡ 1√
2
(~vj + ~vj

∗),

~vjI ≡ −i√
2
(~vj − ~vj

∗).

(♮)
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These vectors are real (members of RN ⊂ CN ; note that CN = RN ⊕ iRN as a real vector
space). The action of A

C
on them is

A
C
~vjR = −λj~vjI , A

C
~vjI = +λj~vjR .

So, with respect to such a basis, A
C

takes the form

A =













0 λ1

−λ1 0
0 0

0 0 λ2

−λ2 0
0

0 0 . . .













.

Since the basis vectors and the matrix are real, we can discard the “iRN” part of CN and
think of this as the matrix of a linear mapping RN → RN . It is the original operator A in
a new basis! Indeed, the composition of the unitary change-of-basis matrix implied by (♮)
with the unitary matrix which diagonalized B is a real unitary matrix, since it maps a real
basis to another real basis. Thus we’ve shown that A can be put into 2× 2-block-diagonal
form by a similarity transformation with an orthogonal matrix.

Now consider the case that 0 ∈ σ(A
C
). Then

A
C
~vj = ~0, A

C
~vj

∗ = ~0.

There are two possibilities:

(1) ~vj and ~vj
∗ are linearly independent. Then the foregoing argument still applies, and it

yields a diagonal block

(

0 0
0 0

)

in the canonical form.

(2) ~vj and ~vj
∗ are dependent. (If N is odd, this case must occur at least once.) Then ~vjR

and ~vjI are dependent; choose one of them, normalized, to get a real basis vector ~v

such that A(C)~v = ~0.

Thus, for odd N we have the canonical form



















0 0 0 . . .
0 0 λ1

0 −λ1 0 0
...

0 λ2

−λ2 0

0 . . .



















,

where some of the λ’s may be 0; for even N we have the same canonical form as before, with
some of the λ’s possibly 0. We take this to be the “canonical” form of a real antisymmetric
operator. [This is the theorem.]
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A direct proof (involving no complex numbers) is possible.

A similar theorem holds giving a canonical form for real orthogonal operators (Bowen
& Wang, Exercise 30.4, p. 165). In fact, there is a direct relationship between orthogonal
and antisymmetric operators, which we’ll clarify in the next subsection.)
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Rotations, cross product, and curl

Relationship between rotations and antisymmetric operators

Consider the matrix

A(t) =





cosωt − sinωt 0
sinωt cosωt 0
0 0 1



 ,

which represents a rotation about the z axis. If t is intepreted as time, this family of
matrices describes a rotational motion at a uniform rate (with angular velocity ω): ~x(t) =
A(t)~x(0).

We can calculate

dA

dt
=





−ω sinωt −ω cosωt 0
ω cosωt −ω sinωt 0

0 0 0



 ,

dA

dt

∣

∣

∣

∣

t=0

=





0 −ω 0
ω 0 0
0 0 0



 ≡ Ω,

and we note that Ω is antisymmetric. More generally,

dA(t)

dt
= ΩA(t) for all t

(Ω independent of t).

Conversely,
A(t) = eΩt.

This is clear from the differential equation we have just derived, and it can be verified by
calculating the exponential matrix by a power series.

We observe that A(t) satisfies the group properties

A(t)A(s) = A(t+ s), (1)

A(0) = 1, (2)

as well as the orthogonality condition

A(t)∗A(t) = 1. (0)

Furthermore, the uniform rotational motion about any other axis will be represented by
the matrices A′ ≡ OAO−1 for some orthogonal O. They will also satisfy the conditions
(0)–(2). Conversely, as will become clear presently, any 3 × 3 family of real matrices (or
the operators they represent) satisfying (0)–(2) is a uniform rotational motion about some
axis; it is called a one-parameter group of rotations or orthogonal transformations.
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Lemma.
dA−1

dt
= −A−1 dA

dt
A−1

for any family of invertible matrices (or operators) depending on a parameter t.

Proof: Differentiate A−1A = 1:

0 =
d

dt
(A−1A) =

dA−1

dt
A+ A−1 dA

dt
.

Solve for
dA−1

dt
.

Apply the lemma to a family with properties (0) and (2):

dA∗

dt

∣

∣

∣

∣

t=0

= −dA

dt

∣

∣

∣

∣

t=0

≡ −Ω,

but also
dA∗

dt

∣

∣

∣

∣

t=0

=

(

dA

dt

)∗
∣

∣

∣

∣

t=0

= Ω∗.

Thus Ω is antisymmetric. Using (1), one can now show that dA/dt = ΩA for all t. Thus
A(t) = eΩt, which is a rotational motion about some axis (the direction of the 0-eigenvector
of A).

This discussion can be summarized by the statement that one-parameter groups of
orthogonal operators (or matrices) are in one-to-one correspondence with antisymmetric
operators. The antisymmetric object Ω is called the (infinitesimal) generator of the one-
parameter group A(t).

This treatment has been for R3. Most of it carries over to arbitrary dimension, but
the concept of “axis” does not. Our normal-form theorem for antisymmetric operators,
together with a straightforward generalization of the foregoing discussion, shows that a
general rotation is built out of rotations in a number of two-dimensional subspaces (or-
thogonal to each other). If the dimension is odd, there is one direction in space left over,
which may be called the axis.

Relationship between antisymmetric operators

and the vector cross product

From now on we are restricted purely to dimension 3. The most general antisymmetric
matrix is

Ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 ,
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where the rationale for the numbering of the elements will soon become clear. The action
of Ω on a vector is given by

Ω~y =





−ω3y2 + ω2y3
ω3y1 − ω1y3
−ω2y1 + ω1y2



 ≡

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
ω1 ω2 ω3

y1 y2 y3

∣

∣

∣

∣

∣

∣

≡ ~ω × ~y

in the notations of classical vector algebra. Thus every antisymmetric matrix is associated
with a vector in R3, and vice versa. In fact, the association is an isomorphism of vector
spaces. The action of the antisymmetric operator on other vectors corresponds to the cross
product of the vector with the other vectors.

Any time you see a cross product in an application, there is at least one antisymmetric
operator hiding in the problem somewhere, disguised as a vector!

The prototype example is angular velocity. Rotation of a body is associated with
a vector ~ω along the axis of rotation. The (linear) velocity of a point ~y on the body is
~v = ~ω × ~y. (~v and ~y are functions of time.) This just means

d~y

dt
= Ω~y,

where
~y(t) = A(t)~y(0)

— in accordance with the discussions above.
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ω

Other physical quantities which are antisymmetric operators disguised as vectors in-
clude angular momentum, torque, and magnetic field. Except for the last, all of these
are clearly associated with rotations. The appearance of magnetic field in the list will be
elucidated later.

Let us further recall the elementary geometrical definition of the vector cross product:
~u× ~v is the vector (1) perpendicular to the plane of ~u and ~v, (2) with length ‖~u‖‖~v‖ sin θ
(θ ≡ angle between ~u and ~v), and (3) (if sin θ 6= 0) with direction (sign) such that ~u,

~v, ~u × ~v form a basis of the same handedness as ı̂, ̂, k̂. Note that only (3) refers to a
coordinate system. Thus ~u×~v is independent of coordinate system except for handedness.
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If ~u and ~v are ordinary (“true”) vectors, then ~u× ~v is a pseudovector whose sign depends
on the handedness of the coordinate system.

On the other hand, angular velocity, magnetic field, and so on are already pseudovec-
tors, since their physical definitions involve “right-hand rules”. Therefore, when such a
vector appears as a factor in a cross product, the relevant statement is: If ~ω is a pseu-
dovector and ~y is a true vector, then ~ω × ~y is a true vector. Thus in applications we often
see two cross products together, one to create a pseudovector and another to undo it.

Example: Magnetic field.

1. Biot–Savart law:

d ~B =
I d~l × ~y

‖~y‖3 ;

~B = I

∮

circuit

d~l × ~y

‖~y‖3 .

(For a single charge, ~B = e
~v × ~y

‖~y‖3 = ~v × ~E.)

2. Lorentz force law: ~F = e( ~E + ~v × ~B) (~v = velocity of another charge).

Thus the sign of ~B is purely a convention and cancels out of the final answer for the
magnetic force between two charges. [However, in some nuclear decays, particles are
emitted preferentially along the direction of an applied magnetic field. This shows that
some laws of nature do make a distinction between left and right (“overthrow of parity”
— 1956).]
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⊕

ν

ν

−

−~B

I

From this discussion we expect that the vectors ~ω associated to antisymmetric matrices
via the cross product are pseudovectors, not true vectors. In other words, the isomorphism
between antisymmetric operators and vectors involves an arbitrary sign convention; return-
ing to the determinantal definition of the cross product, we see that this sign is hidden in
the ordering of {ı̂, ̂, k̂} there.
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Here is another way of looking at this: If Ω ≡ L~ω is the antisymmetric matrix cor-
responding to a coordinate vector ~ω, then under a change of coordinates ~x 7→ O~x + ~x0

(where O−1 = O∗), we should have

OL~ωO
−1 = (det O)LO~ω ,

where the determinant is ±1 depending on whether the handedness changes. This relation
can be verified algebraically by a tedious calculation which involves equating O∗ to O−1,
calculated as

adjO

det O
.

Relationship of these matters to the curl

The curl operation on vector fields is usually defined by applying the cross product
formally to the gradient “vector”,

∇ ≡ ∂

∂x1
ı̂+ · · · .

That is, if ~ω(~x) = ∇× ~A, then

ω2 =
∂A1

∂x3
− ∂A3

∂x1
, etc.

We see that ω2 = (L~ω)13 (and similarly for the other components), where

L(∇× ~A) = J ~A
− J∗

~A

= twice the antisymmetric part of the Jacobian matrix of ~A (the table of all first-order

partial derivatives of all component functions of ~A). Clearly, the antisymmetric matrix is
more fundamental here than the vector.

Under a change of coordinates, J transforms to OJO−1, evaluated at a suitably trans-
formed argument vector. (The O is the rotation of the components of ~A; the O−1 comes

from the chain rule for the transformation of the partial derivatives.) It follows that ∇× ~A

transforms as a pseudovector. In other words, the formula for ∇× ~A is, by definition, the
same in all coordinate systems, but it does not define quite the same vector: There is a
sign change when you switch from right-handed to left-handed coordinates. The formula
does always define the same antisymmetric operator.

Since a vector field with nonzero curl has a rotational character, we have come full
circle in our discussion of four types of mathematical objects whose relationship is left
tantalizingly obscure in “classical” textbooks.
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Chapter 8 of Bowen & Wang, especially Sec. 41 on “Duality”, introduces one to the
20th-century generalization of these matters to dimensions other than 3.
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