
Tensors (Chap. 7)

Bilinear forms

Henceforth F = R. Consider a function of two variables in V, which is linear in each
variable with the other fixed:

Q(~u,~v) ∈ R, Q:V × V → R,

Q(α~u1 + ~u2, ~v) = αQ(~u1, ~v) +Q(~u2, ~v), etc.

This is called a bilinear form. A (real) inner product is a bilinear form satisfying additional
conditions (symmetry and positivity).

Given a basis {~dj}, let Qjk = Q(~dj , ~dk). Then

Q(~u,~v) = Qjku
jvk

for ~u ≡ uj ~dj , etc.

Definition: Q is symmetric if Q(~u,~v) = Q(~v, ~u), or, equivalently, Qjk = Qkj . (Note
that this equivalence does not require an ON basis, unlike that for symmetric operators.
Indeed, “ON” is meaningless if there is no inner product.)

Definition: A quadratic form is Q(~v, ~v) for some bilinear Q — which may be assumed
symmetric.

The bilinear form may be recovered from the quadratic form by calculating Q(~u +
~v, ~u+~v) under the assumption of bilinearity and symmetry, and solving for Q(~u,~v). (This
trick of “polarization” has been used by us before.)

What happens to Qjk under change of basis? Say ~wk = Rj
k
~dj .

newQk1k2
≡ Q(~wk1

, ~wk2
) = Rj1

k1
Rj2

k2
Q(~dj1 ,

~dj2)

= Rj1
k1
Rj2

k2
Qj1j2 = (R∗QR)k1k2

. (%)

Thus each index transforms like the index of a covector (“covariantly”).

Contrast the transformation law of the matrix of an operator (A:V → V):
newAk1

k2
= (R−1AR)k1

k2
= (R−1)k1

j1R
j2
k2
Aj1

j2 .

Here the column index is covariant, but the row index is “contravariant” (like the index of
a vector in V, not V∗).

Note: If R is OG (e.g., if both bases are ON in an inner product space), then these
transformation formulas are the same. If R is not OG, then (%) is not a “similarity
transformation”.
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Theorem.

(A) A symmetric bilinear form can be diagonalized by an orthogonal matrix.

(B) A symmetric bilinear form is represented, in some basis, by a diagonal matrix each of
whose diagonal elements equals 1, −1, or 0. (The number of each of these is uniquely
determined.)

(C) Two symmetric bilinear forms, at least one of which is positive definite, can be simul-
taneously diagonalized:

Q(1) = 1, Q(2) =





λ1 0
λ2

0
. . .



 .

Familiar example of (B): In two dimensions the possible normal forms (up to overall
sign) correspond to the classification of conic sections.

(

1 0
0 1

)

ellipse

(

1 0
0 −1

)

hyperbola

(

1 0
0 0

)

parabola

(

0 0
0 0

)

straight line

Proof:

(A) Immediate from the preceding “note” and the spectral theorem for symmetric opera-
tors.

(B) Diagonalize as in (A). Then transform with

R = R∗ =







|λ1|
−

1

2 0

0 |λ2|
−

1

2

. . .






;

if λj = 0, replace |λj |
−

1

2 by 1. (In more elementary terms, rescale the variables so as
to replace 4x2 − 2y2, for instance, with x′2 − y′2.) I omit the proof of uniqueness.

(C) Regard the positive definite form as an inner product, introduce an ON basis, and
apply (A) to get a better ON basis. (The matrix of the inner product is 1 in any ON
basis.)

Observation 1.
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(A) A bilinear form Q:V × V → R defines a linear operator Q̃:V → V∗ by

Q̃
~u
(~v) ≡ Q(~u,~v).

(When Q is the inner product, Q̃ = G.) Conversely, such an operator defines a form.

(B) An operator A:V → V defines a bilinear function A:V∗ × V → R by

A(Ũ , ~v) ≡ Ũ(A~v).

Conversely, such a bilinear function defines an operator (since V∗∗ = V). [If V is a
real inner-product space, an operator A defines a bilinear form A:V × V → R by
A(~u,~v) ≡ 〈~u, A~v〉.]

(C) In each case, the matrix of the operator and that of the associated bilinear form are
the same. The correspondence between operators and bilinears is an isomorphism.

Observation 2. Each pair of vectors ~v1, ~v2 ∈ V defines a bilinear form ~v1 ⊗ ~v2 on V∗ by

(~v1 ⊗ ~v2)(Ũ
1, Ũ2) ≡ Ũ1(~v1) Ũ

2(~v2), ∀Ũ1, Ũ2 ∈ V∗.

The matrix of ~v1 ⊗ ~v2 is {vj1 v
k
2}. The object ~v1 ⊗ ~v2 depends bilinearly on ~v1 and ~v2 .

Similarly, each pair Ũ1, Ũ2 ∈ V∗ defines a bilinear form Ũ1 ⊗ Ũ2 on V by

(Ũ1 ⊗ Ũ2)(~v1, ~v2) ≡ Ũ1(~v1) Ũ
2(~v2).

Its matrix is {U1
j U2

k} and it depends bilinearly on Ũ1 and Ũ2.

The operation ⊗ is called tensor product.
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