Tensors (Chap. 7)

Bilinear forms

Henceforth $\mathcal{F} = \mathbf{R}$. Consider a function of *two* variables in \mathcal{V} , which is linear in each variable with the other fixed:

$$\underline{Q}(\vec{u}, \vec{v}) \in \mathbf{R}, \qquad \underline{Q}: \mathcal{V} \times \mathcal{V} \to \mathbf{R},$$
$$\underline{Q}(\alpha \vec{u}_1 + \vec{u}_2, \vec{v}) = \alpha \underline{Q}(\vec{u}_1, \vec{v}) + \underline{Q}(\vec{u}_2, \vec{v}), \qquad \text{etc.}$$

This is called a *bilinear form*. A (real) inner product is a bilinear form satisfying additional conditions (symmetry and positivity).

Given a basis
$$\{\vec{d}_j\}$$
, let $Q_{jk} = \underline{Q}(\vec{d}_j, \vec{d}_k)$. Then
 $Q(\vec{u}, \vec{v}) = Q_{jk} u^j v^k$

for $\vec{u} \equiv u^j \vec{d_j}$, etc.

Definition: \underline{Q} is symmetric if $\underline{Q}(\vec{u}, \vec{v}) = \underline{Q}(\vec{v}, \vec{u})$, or, equivalently, $Q_{jk} = Q_{kj}$. (Note that this equivalence does *not* require an ON basis, unlike that for symmetric *operators*. Indeed, "ON" is meaningless if there is no inner product.)

Definition: A quadratic form is $\underline{Q}(\vec{v}, \vec{v})$ for some bilinear \underline{Q} — which may be assumed symmetric.

The bilinear form may be recovered from the quadratic form by calculating $\underline{Q}(\vec{u} + \vec{v}, \vec{u} + \vec{v})$ under the assumption of bilinearity and symmetry, and solving for $\underline{Q}(\vec{u}, \vec{v})$. (This trick of "polarization" has been used by us before.)

What happens to Q_{jk} under change of basis? Say $\vec{w}_k = R^{j}_k \vec{d}_j$.

$${}^{\text{new}}Q_{k_1k_2} \equiv \underline{Q}(\vec{w}_{k_1}, \vec{w}_{k_2}) = R^{j_1}{}_{k_1}R^{j_2}{}_{k_2}\underline{Q}(\vec{d}_{j_1}, \vec{d}_{j_2}) = R^{j_1}{}_{k_1}R^{j_2}{}_{k_2}Q_{j_1j_2} = (R^*QR)_{k_1k_2}.$$
(%)

Thus each index transforms like the index of a *covector* ("covariantly").

Contrast the transformation law of the matrix of an operator $(\underline{A}: \mathcal{V} \to \mathcal{V})$: new A_{k_1} $(\underline{P}^{-1}A_{k_1})_{k_1}$ $(\underline{P}^{-1})_{k_1}$ $\underline{P}_{i_2}^{i_2}$ $A_{i_1}^{i_1}$

$${}^{\text{new}}A^{k_1}_{k_2} = (R^{-1}AR)^{k_1}_{k_2} = (R^{-1})^{k_1}_{j_1}R^{j_2}_{k_2}A^{j_1}_{j_2}$$

Here the column index is covariant, but the row index is "contravariant" (like the index of a vector in \mathcal{V} , not \mathcal{V}^*).

NOTE: If R is OG (e.g., if both bases are ON in an inner product space), then these transformation formulas are the same. If R is not OG, then (%) is not a "similarity transformation".

Theorem.

- (A) A symmetric bilinear form can be diagonalized by an orthogonal matrix.
- (B) A symmetric bilinear form is represented, in **some** basis, by a diagonal matrix each of whose diagonal elements equals 1, −1, or 0. (The number of each of these is uniquely determined.)
- (C) Two symmetric bilinear forms, at least one of which is positive definite, can be simultaneously diagonalized:

$$Q_{(1)} = \underline{1}, \qquad Q_{(2)} = \begin{pmatrix} \lambda_1 & 0 \\ & \lambda_2 & \\ 0 & \ddots \end{pmatrix}.$$

FAMILIAR EXAMPLE OF (B): In two dimensions the possible normal forms (up to overall sign) correspond to the classification of conic sections.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
ellipse hyperbola parabola straight line

Proof:

- (A) Immediate from the preceding "note" and the spectral theorem for symmetric operators.
- (B) Diagonalize as in (A). Then transform with

$$R = R^* = \begin{pmatrix} |\lambda_1|^{-\frac{1}{2}} & 0 \\ 0 & |\lambda_2|^{-\frac{1}{2}} \\ & & \ddots \end{pmatrix};$$

if $\lambda_j = 0$, replace $|\lambda_j|^{-\frac{1}{2}}$ by 1. (In more elementary terms, rescale the variables so as to replace $4x^2 - 2y^2$, for instance, with $x'^2 - y'^2$.) I omit the proof of uniqueness.

(C) Regard the positive definite form as an inner product, introduce an ON basis, and apply (A) to get a better ON basis. (The matrix of the inner product is <u>1</u> in any ON basis.)

Observation 1.

(A) A bilinear form $\underline{Q}: \mathcal{V} \times \mathcal{V} \to \mathbf{R}$ defines a linear operator $\underline{\tilde{Q}}: \mathcal{V} \to \mathcal{V}^*$ by

$$\underline{\tilde{Q}}_{\vec{u}}(\vec{v}) \equiv \underline{Q}(\vec{u},\vec{v}).$$

(When \underline{Q} is the inner product, $\underline{\tilde{Q}} = \underline{G}$.) Conversely, such an operator defines a form.

(B) An operator $\underline{A}: \mathcal{V} \to \mathcal{V}$ defines a bilinear function $\underline{A}: \mathcal{V}^* \times \mathcal{V} \to \mathbf{R}$ by

$$\underline{A}(\tilde{U}, \vec{v}) \equiv \tilde{U}(\underline{A}\vec{v}).$$

Conversely, such a bilinear function defines an operator (since $\mathcal{V}^{**} = \mathcal{V}$). [If \mathcal{V} is a real inner-product space, an operator <u>A</u> defines a bilinear form <u>A</u>: $\mathcal{V} \times \mathcal{V} \to \mathbf{R}$ by $\underline{A}(\vec{u}, \vec{v}) \equiv \langle \vec{u}, \underline{A}\vec{v} \rangle$.]

(C) In each case, the matrix of the operator and that of the associated bilinear form are the same. The correspondence between operators and bilinears is an isomorphism.

Observation 2. Each pair of vectors $\vec{v}_1, \vec{v}_2 \in \mathcal{V}$ defines a bilinear form $\vec{v}_1 \otimes \vec{v}_2$ on \mathcal{V}^* by

$$(\vec{v}_1 \otimes \vec{v}_2)(\tilde{U}^1, \tilde{U}^2) \equiv \tilde{U}^1(\vec{v}_1) \, \tilde{U}^2(\vec{v}_2), \quad \forall \tilde{U}_1, \tilde{U}_2 \in \mathcal{V}^*$$

The matrix of $\vec{v}_1 \otimes \vec{v}_2$ is $\{v_1^j v_2^k\}$. The object $\vec{v}_1 \otimes \vec{v}_2$ depends bilinearly on \vec{v}_1 and \vec{v}_2 .

Similarly, each pair $\tilde{U}^1, \tilde{U}^2 \in \mathcal{V}^*$ defines a bilinear form $\tilde{U}^1 \otimes \tilde{U}^2$ on \mathcal{V} by

$$(\tilde{U}^1 \otimes \tilde{U}^2)(\vec{v}_1, \vec{v}_2) \equiv \tilde{U}^1(\vec{v}_1) \, \tilde{U}^2(\vec{v}_2).$$

Its matrix is $\{U_j^1 U_k^2\}$ and it depends bilinearly on \tilde{U}^1 and \tilde{U}^2 .

The operation \otimes is called *tensor product*.