Direct sums (Sec. 10)

Recall that a subspace of V is a subset closed under addition and scalar multiplication.

V and {6} are subspaces of V. A proper subspace is any subspace other than V
itself. A nontrivial subspace is any subspace other than {0}. [Warning: Some authors use
“proper” to mean “proper and nontrivial”.]

THEOREM 10.1. Every subspace contains 0.

EXAMPLE: Planes through the origin are subspaces of R3. Planes that don’t pass through
the origin are something else (affine subspaces or cosets (Sec. 11)).

THEOREM (10.2, 10.3). U a subspace of V = dimU < dimV. If dimV < oo, then
equality holds only if U =V .

Operations on subspaces: (see diagrams below)

U N is a subspace.
U U W generally isn’t one. However —

U+W={u+w:uecl, W € W} is the subspace generated by UUW (= span (UUW)).

Definition: U + W is called U & W (a direct sum) if U N W = {0}.

The sum of two planes shown on the left is not direct. But we can have a direct sum
of a plane and a line: R? = R? @ R!, as shown on the right.

Theorem 10.8. Any v € U®W has a unique decomposition v = i+ (4 € U, W € W).
(If a sum is not direct, the decomposition is not unique.)

ExXAMPLES: In the right sketch, the vector in space decomposes into its projections on
the plane and the line. But in the left sketch, a vector in one plane is also the sum of a
different vector in that plane with a nonzero vector in the other plane.
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REMARK: Such a decomposition is analogous to expansion of a vector with respect to a
basis, except that here the “pieces” of the vector space have dimensions > 1, possibly.
Directness of a sum = linear independence of a spanning set.

Theorem 10.9’. dimi & W = dimU + dim W. More generally, dimU + W = dimU +
dim W — dimU N W if U N W is finite-dimensional.

PROOF: Let B be a basis for Y N WW. By Thm. 9.8, B can be extended to a basis By, for
U, and likewise B can be extended to a basis By, for W. Let r = dimU N W, s = dimU,
t =dimW. If s or t = oo, the theorem is trivial. Otherwise,

B:{ﬁlv"'al_f?"}a BU:{1717"'7177“7&17"'368—1"}7

By = {#1,..., 0,101, ... , Ty ).

Let B = By U By — as a set, not a sequence. It contains r + (s —r) 4+ (t —r) =s+t—7r
vectors. Therefore, we will have proved the theorem if we show that B is a basis for U/ +W.
Clearly B spans U + VW. We show it is independent: Suppose

6: Z)\jﬁj —|—Z,uj’l7j +Zvj117j.
Notice that no nontrival linear combination of the #; can lie in W, since then By, would be

dependent. Therefore, the first (A) sum is not in W (unless it is zero), but the remaining
terms are in VV. Thus we must have

Y Ny =0=> v+ v

Then By, Byy each independent = all coefficients = 0.

CARTESIAN PRODUCT “=" DIRECT SUM
UxV={(uv):ael, veV}

Addition and scalar multiplication are defined componentwise:
(11)1,’[71) =+ )\(ﬁg,ﬁg) = (l_[l —+ )\ﬁg, 171 + )\172)

We blur distinctions: identify v




We already did this when we wrote R3 = R? @ R

In this construction, & and V are not, a priori, subspaces of a larger space, but we
create by brute force a larger space for them to sit inside.

DIRECT SUMS OF MORE THAN 2 SPACES: Uy ®Us U3 D - - -

[One motivation: Diagonalization of a matrix with multiple eigenvalues. A definite choice
of basis in each eigenspace is excess baggage.]

In the Cartesian-product picture there is no problem in generalizing to more than two
factors. If there are infinitely many factors (say countable), we have a choice of considering
arbitrary sequences or terminating sequences: (¥, Ua, 0,74,0,0,0,... ). So there are two
different definitions.

If the U; start as subspaces of V, what replaces the condition Y N W = {6}7 This
time we’d better stick to finite sums, corresponding to terminating sequences.

First guess: U; NU, = {0}, Vj, k.

This is wrong: Consider three coplanar but noncollinear lines in R3. It’s wrong for the
same reason that we can’t define linear dependence of {¥;, 2, U3, ...} by: “Some v} is a
scalar multiple of some other v.”

An analogue of the definition of linear independence that seems suitable for our pur-
pose is:

(%) If 7 € Uj and 0 = Y}, then Vij; = 0.

But this corresponds more nearly to the conclusion of Thm. 10.8 than to its hypothesis
(UNV = {0}). Let us conjecture

THEOREM. The following are equivalent:

7j—1

L(1)  Un> U={0} forj=2,3,....
k=1



2. (book) [book’s similar but stronger condition, p. 57]

j—1 (e’
Un> U +U;n Y U ={0}
k=1 k=j+1

3. (uniqueness) U € Y U; = ¥ has unique decomposition ¥ =) i;, i; € U;.
4. (%)

Any of these defines directness of the sum: Y \U; =Uy GU & - - -.

PRrROOF: Clearly (book) = (). Let’s show (t) = (*) = (uniqueness) = (book).

jmax jrnax_1
M= 0=) 0= b= > U
j=1 j=1

Therefore both sides = 0 by (). By induction, all terms = 0.

(x) = (uniq): Subtract two candidate sums for ¢ and conclude that the terms are individ-
ually 0. [Cf. two earlier proofs.]

not(book) = not(uniq): Suppose 0 # T € U; N S I Up + U; N > heji1 Ur. Then
Jw e U; N ch;i Uy or FW €Uy NI 05 Uy (0 # 0). Consider the second case (first is

similar): W= 1w+ Osu, = Ouj + .

COMPLEMENTS

Definition: If i/ @)W =V, then W is called a direct complement of Y [in V].

Complements are not unique:

U U

W K

(So far we have no notion of perpendicularity.)

DEFINITION: dim W = codimension of U [relative to V].
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The codimension may be finite even when dim/ and dimV are oco. Although the
direct complement is not unique, the codimension is. [Can you prove this?]

ExaMPLE: [Milne p. 32] V = all continuous functions on R. U = all such functions
satisfying f(0) = 0. A direct complement of I/ is the span of the constant function 1 (the
space of constant functions):

fevV= f(z)=a+g(x), where

g(x) = f(x) — f(0) eU, and
a=az) = f(0), V.
Thus codim U/ = 1.

[Discussion of Sec. 11 (factor spaces) postponed.]



