Direct sums (Sec. 10)

Recall that a subspace of \mathcal{V} is a subset closed under addition and scalar multiplication.

 \mathcal{V} and $\{\vec{0}\}$ are subspaces of \mathcal{V} . A proper subspace is any subspace other than \mathcal{V} itself. A nontrivial subspace is any subspace other than $\{\vec{0}\}$. [Warning: Some authors use "proper" to mean "proper and nontrivial".]

Theorem 10.1. Every subspace contains $\vec{0}$.

EXAMPLE: Planes through the origin are subspaces of \mathbb{R}^3 . Planes that don't pass through the origin are something else (affine subspaces or cosets (Sec. 11)).

THEOREM (10.2, 10.3). \mathcal{U} a subspace of $\mathcal{V} \Rightarrow \dim \mathcal{U} \leq \dim \mathcal{V}$. If $\dim \mathcal{V} < \infty$, then equality holds only if $\mathcal{U} = \mathcal{V}$.

Operations on subspaces: (see diagrams below)

 $\mathcal{U} \cap \mathcal{W}$ is a subspace.

 $\mathcal{U} \cup \mathcal{W}$ generally isn't one. However —

 $\mathcal{U} + \mathcal{W} \equiv \{\vec{u} + \vec{w} : \vec{u} \in \mathcal{U}, \vec{w} \in \mathcal{W}\}\$ is the subspace generated by $\mathcal{U} \cup \mathcal{W} \ (\equiv \text{ span}\ (\mathcal{U} \cup \mathcal{W})).$

Definition: $\mathcal{U} + \mathcal{W}$ is called $\mathcal{U} \oplus \mathcal{W}$ (a direct sum) if $\mathcal{U} \cap \mathcal{W} = \{\vec{0}\}$.

The sum of two planes shown on the left is *not* direct. But we can have a direct sum of a plane and a line: $\mathbf{R}^3 = \mathbf{R}^2 \oplus \mathbf{R}^1$, as shown on the right.

Theorem 10.8. Any $\vec{v} \in \mathcal{U} \oplus \mathcal{W}$ has a **unique** decomposition $\vec{v} = \vec{u} + \vec{w}$ ($\vec{u} \in \mathcal{U}$, $\vec{w} \in \mathcal{W}$). (If a sum is not direct, the decomposition is not unique.)

EXAMPLES: In the right sketch, the vector in space decomposes into its projections on the plane and the line. But in the left sketch, a vector in one plane is also the sum of a different vector in that plane with a nonzero vector in the other plane.

REMARK: Such a decomposition is analogous to expansion of a vector with respect to a basis, except that here the "pieces" of the vector space have dimensions > 1, possibly. Directness of a sum \approx linear independence of a spanning set.

Theorem 10.9'. $\dim \mathcal{U} \oplus \mathcal{W} = \dim \mathcal{U} + \dim \mathcal{W}$. More generally, $\dim \mathcal{U} + \mathcal{W} = \dim \mathcal{U} + \dim \mathcal{W} - \dim \mathcal{U} \cap \mathcal{W}$ if $\mathcal{U} \cap \mathcal{W}$ is finite-dimensional.

PROOF: Let \mathcal{B} be a basis for $\mathcal{U} \cap \mathcal{W}$. By Thm. 9.8', \mathcal{B} can be extended to a basis $\mathcal{B}_{\mathcal{U}}$ for \mathcal{U} , and likewise \mathcal{B} can be extended to a basis $\mathcal{B}_{\mathcal{W}}$ for \mathcal{W} . Let $r = \dim \mathcal{U} \cap \mathcal{W}$, $s = \dim \mathcal{U}$, $t = \dim \mathcal{W}$. If s or $t = \infty$, the theorem is trivial. Otherwise,

$$\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_r\}, \quad \mathcal{B}_{\mathcal{U}} = \{\vec{v}_1, \dots, \vec{v}_r, \vec{u}_1, \dots, \vec{u}_{s-r}\},$$
$$\mathcal{B}_{\mathcal{W}} = \{\vec{v}_1, \dots, \vec{v}_r, \vec{w}_1, \dots, \vec{w}_{t-r}\}.$$

Let $\bar{\mathcal{B}} = \mathcal{B}_{\mathcal{U}} \cup \mathcal{B}_{\mathcal{W}}$ — as a *set*, not a *sequence*. It contains r + (s - r) + (t - r) = s + t - r vectors. Therefore, we will have proved the theorem if we show that $\bar{\mathcal{B}}$ is a basis for $\mathcal{U} + \mathcal{W}$. Clearly $\bar{\mathcal{B}}$ spans $\mathcal{U} + \mathcal{W}$. We show it is independent: Suppose

$$\vec{0} = \sum \lambda^j \vec{u}_j + \sum \mu^j \vec{v}_j + \sum \nu^j \vec{w}_j.$$

Notice that no nontrival linear combination of the \vec{u}_j can lie in \mathcal{W} , since then $\mathcal{B}_{\mathcal{U}}$ would be dependent. Therefore, the first (λ) sum is not in \mathcal{W} (unless it is zero), but the remaining terms are in \mathcal{W} . Thus we must have

$$\sum \lambda^j \vec{u}_j = \vec{0} = \sum \mu^j \vec{v}_j + \sum \nu^j \vec{w}_j.$$

Then $\mathcal{B}_{\mathcal{U}}$, $\mathcal{B}_{\mathcal{W}}$ each independent \Rightarrow all coefficients = 0.

CARTESIAN PRODUCT "=" DIRECT SUM

$$\mathcal{U}\times\mathcal{V}\equiv\{(\vec{u},\vec{v}):\vec{u}\in\mathcal{U},\;\vec{v}\in\mathcal{V}\}$$

Addition and scalar multiplication are defined componentwise:

$$(\vec{u}_1, \vec{v}_1) + \lambda(\vec{u}_2, \vec{v}_2) \equiv (\vec{u}_1 + \lambda \vec{u}_2, \ \vec{v}_1 + \lambda \vec{v}_2).$$

We blur distinctions: identify

$$\mathcal{U} \times \mathcal{V} \cong \mathcal{U} \oplus \mathcal{V}$$
 $\mathcal{U} \cong \mathcal{U} \times \{\vec{0}\} \subset \mathcal{U} \times \mathcal{V}$
 $(\vec{u}, \vec{v}) \cong \vec{u} + \vec{v}$
 $(\vec{u}, \vec{0}_{\mathcal{V}}) \cong \vec{u}$
 $(\vec{0}_{\mathcal{U}}, \vec{v}) \cong \vec{v}$

We already did this when we wrote $\mathbf{R}^3 = \mathbf{R}^2 \oplus \mathbf{R}^1$.

In this construction, \mathcal{U} and \mathcal{V} are not, a priori, subspaces of a larger space, but we create by brute force a larger space for them to sit inside.

Direct sums of more than 2 spaces:
$$\mathcal{U}_1 \oplus \mathcal{U}_2 \oplus \mathcal{U}_3 \oplus \cdots$$

[One motivation: Diagonalization of a matrix with multiple eigenvalues. A definite choice of basis in each eigenspace is excess baggage.]

In the Cartesian-product picture there is no problem in generalizing to more than two factors. If there are infinitely many factors (say countable), we have a choice of considering arbitrary sequences or terminating sequences: $(\vec{v}_1, \vec{v}_2, \vec{0}, \vec{v}_4, \vec{0}, \vec{0}, \vec{0}, \dots)$. So there are two different definitions.

If the \mathcal{U}_j start as subspaces of \mathcal{V} , what replaces the condition $\mathcal{U} \cap \mathcal{W} = \{\vec{0}\}$? This time we'd better stick to finite sums, corresponding to terminating sequences.

First guess:
$$\mathcal{U}_j \cap \mathcal{U}_k = \{\vec{0}\}, \quad \forall j, k.$$

This is wrong: Consider three coplanar but noncollinear lines in \mathbf{R}^3 . It's wrong for the same reason that we can't define linear dependence of $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots\}$ by: "Some \vec{v}_j is a scalar multiple of some other \vec{v}_k ."

An analogue of the definition of linear independence that seems suitable for our purpose is:

(*) If
$$\vec{v}_j \in \mathcal{U}_j$$
 and $\vec{0} = \sum \vec{v}_j$, then $\forall \vec{v}_j = \vec{0}$.

But this corresponds more nearly to the *conclusion* of Thm. 10.8 than to its hypothesis $(\mathcal{U} \cap \mathcal{V} = \{\vec{0}\})$. Let us conjecture

THEOREM. The following are equivalent:

1.
$$(\dagger)$$
 $\mathcal{U}_j \cap \sum_{k=1}^{j-1} \mathcal{U}_k = \{\vec{0}\}$ for $j = 2, 3, \dots$

2. (book) [book's similar but stronger condition, p. 57]

$$\mathcal{U}_j \cap \sum_{k=1}^{j-1} \mathcal{U}_k + \mathcal{U}_j \cap \sum_{k=j+1}^{\infty} \mathcal{U}_k = \{\vec{0}\}$$

- 3. (uniqueness) $\vec{v} \in \sum \mathcal{U}_j \Rightarrow \vec{v}$ has unique decomposition $\vec{v} = \sum \vec{u}_j$, $\vec{u}_j \in \mathcal{U}_j$.
- 4. (*)

Any of these defines directness of the sum: $\sum U_j = U_1 \oplus U_2 \oplus \cdots$.

PROOF: Clearly (book) \Rightarrow (†). Let's show (†) \Rightarrow (*) \Rightarrow (uniqueness) \Rightarrow (book).

$$(\dagger) \Rightarrow (*): \quad \vec{0} = \sum_{j=1}^{j_{\text{max}}} \vec{v}_j \Rightarrow -\vec{v}_{j_{\text{max}}} = \sum_{j=1}^{j_{\text{max}}-1} \vec{v}_j.$$

Therefore both sides = 0 by (†). By induction, all terms = 0.

(*) \Rightarrow (uniq): Subtract two candidate sums for \vec{v} and conclude that the terms are individually $\vec{0}$. [Cf. two earlier proofs.]

 $\underbrace{\text{not(book)} \Rightarrow \text{not(uniq)}}_{\text{look}}: \text{ Suppose } \vec{0} \neq \vec{v} \in \mathcal{U}_j \cap \sum_{k=1}^{j-1} \mathcal{U}_k + \mathcal{U}_j \cap \sum_{k=j+1}^{\infty} \mathcal{U}_k. \text{ Then} \\
\exists \vec{w} \in \mathcal{U}_j \cap \sum_{k=1}^{j-1} \mathcal{U}_k \text{ or } \exists \vec{w} \in \mathcal{U}_j \cap \sum_{k=j+1}^{\infty} \mathcal{U}_k \quad (\vec{w} \neq \vec{0}). \text{ Consider the second case (first is similar): } \vec{w} = \vec{w} + \vec{0}_{\Sigma \mathcal{U}_k} = \vec{0}_{\mathcal{U}_j} + \vec{w}.$

Complements

Definition: If $\mathcal{U} \oplus \mathcal{W} = \mathcal{V}$, then \mathcal{W} is called a *direct complement* of \mathcal{U} [in \mathcal{V}].

Complements are not unique:

4

(So far we have no notion of perpendicularity.)

Definition: dim $W \equiv codimension$ of \mathcal{U} [relative to \mathcal{V}].

The codimension may be finite even when $\dim \mathcal{U}$ and $\dim \mathcal{V}$ are ∞ . Although the direct complement is not unique, the codimension is. [Can you prove this?]

EXAMPLE: [Milne p. 32] $\mathcal{V} =$ all continuous functions on \mathbf{R} . $\mathcal{U} \equiv$ all such functions satisfying f(0) = 0. A direct complement of \mathcal{U} is the span of the constant function 1 (the space of constant functions):

$$f \in \mathcal{V} \Rightarrow f(x) = \alpha + g(x)$$
, where $g(x) \equiv f(x) - f(0) \in \mathcal{U}$, and $\alpha = \alpha(x) \equiv f(0), \forall x$.

Thus codim U = 1.

[Discussion of Sec. 11 (factor spaces) postponed.]