## Linear functionals and dual spaces (Secs. 31, 32, 14, 19)

(See also Simmonds, A Brief on Tensor Analysis, Chap. 2)
Definitions: A linear functional is a linear operator whose codomain is $\mathcal{F}$ (a onedimensional vector space). The set of such, $\mathcal{V}^{*} \equiv \mathcal{L}(\mathcal{V} ; \mathcal{F})$, is the dual space of $\mathcal{V}$.

The dimension of $\mathcal{V}^{*}$ is equal to that of $\mathcal{V}$. The elements of $\mathcal{V}^{*}$ are represented by row matrices, those of $\mathcal{V}$ by column matrices.

If $\operatorname{dim} \mathcal{V}=\infty$, one usually considers only the linear functionals which are continuous with respect to some topology. This space is called the topological dual, as opposed to the algebraic dual. The topological dual spaces of infinite-dimensional vector spaces are of even greater practical importance than those of finite-dimensional spaces, because they can contain new objects of a different nature from the vectors of the original spaces. In particular, the linear functionals on certain function spaces include distributions, or "generalized functions", such as the notorious Dirac $\delta$. (Chapter 5 of Milne's book is one place to find an introduction to distributions.)

I will use the notation $\tilde{V}, \tilde{U}, \ldots$ for elements of $\mathcal{V}^{*}$, since the textbook's notation " $\vec{v}^{*}$ " could be misleading. (There is no particular $\vec{v} \in \mathcal{V}$ to which a given $\tilde{V} \in \mathcal{V}^{*}$ is necessarily associated.) Thus $\tilde{U}(\vec{v}) \in \mathcal{F}$. This notation is borrowed from B. Schutz, Geometrical Methods of Mathematical Physics.

Often one wants to consider $\tilde{U}(\vec{v})$ as a function of $\tilde{U}$ with $\vec{v}$ fixed. Sometimes people write

$$
\langle\tilde{U}, \vec{v}\rangle \equiv \tilde{U}(\vec{v}) .
$$

Thus $\langle\ldots\rangle$ is a function from $\mathcal{V}^{*} \times \mathcal{V}$ to $\mathcal{F}$ (sometimes called a pairing.) We have

$$
\begin{aligned}
\langle\alpha \tilde{U}+\tilde{V}, \vec{v}\rangle & =\alpha\langle\tilde{U}, \vec{v}\rangle+\langle\tilde{V}, \vec{v}\rangle, \\
\langle\tilde{U}, \alpha \vec{u}+\vec{v}\rangle & =\alpha\langle\tilde{U}, \vec{u}\rangle+\langle\tilde{U}, \vec{v}\rangle .
\end{aligned}
$$

(Note that there is no conjugation in either formula. The pairing is bilinear, not sesquilinear.)

It will not have escaped your notice that this notation conflicts with one of the standard notations for an inner product - in fact, the one which I promised to use in this part of the course. For that reason, I shall not use the bracket notation for the result of applying a linear functional to a vector; I'll use the function notation, $\tilde{U}(\vec{v})$.

## Relation to an inner product

Suppose that $\mathcal{V}$ is equipped with an inner product. Let's use the notation $\langle\vec{u}, \vec{v}\rangle$, with

$$
\langle\alpha \vec{u}, \vec{v}\rangle=\bar{\alpha}\langle\vec{u}, \vec{v}\rangle, \quad\langle\vec{u}, \alpha \vec{v}\rangle=\alpha\langle\vec{u}, \vec{v}\rangle .
$$

(Thus $\langle\vec{u}, \vec{v}\rangle \equiv \vec{v} \cdot \vec{u}$.)
Definition: The norm of a linear functional $\tilde{U}$ is the number

$$
\|\tilde{U}\|_{\mathcal{V}^{*}} \equiv \sup _{\overrightarrow{0} \neq \vec{v} \in \mathcal{V}} \frac{\|\tilde{U}(\vec{v})\|_{\mathcal{F}}}{\|\vec{v}\|_{\mathcal{V}}}
$$

Riesz Representation Theorem (31.2). Let $\mathcal{V}$ be a Hilbert space. (This includes any finite-dimensional space with an inner product.) Then
(1) Every $\vec{u} \in \mathcal{V}$ determines a $\tilde{U}_{\vec{u}} \in \mathcal{V}^{*}$ by

$$
\tilde{U}_{\vec{u}}(\vec{v}) \equiv\langle\vec{u}, \vec{v}\rangle .
$$

(2) Conversely, every [continuous] $\tilde{U} \in \mathcal{V}^{*}$ arises in this way from some (unique) $\vec{u} \in \mathcal{V}$.
(3) The correspondence $\underline{G}: \vec{u} \mapsto \tilde{U}_{\vec{u}} \equiv \underline{G}(\vec{u})$ is antilinear and preserves the norm:

$$
\begin{gathered}
\tilde{U}_{\alpha \vec{u}+\vec{v}}=\bar{\alpha} \tilde{U}_{\vec{u}}+\tilde{U}_{\vec{v}} \\
\left\|\tilde{U}_{\vec{u}}\right\|_{\mathcal{V}^{*}}=\|\vec{u}\|_{\mathcal{V}}
\end{gathered}
$$

Thus if $\mathcal{F}=\mathbf{R}$, then $\underline{G}$ is an isometric isomorphism of $\mathcal{V}$ onto $\mathcal{V}^{*}$. [Therefore, when there is an inner product, we can think of $\mathcal{V}$ and $\mathcal{V}^{*}$ as essentially the same thing.]

Proof: See Bowen \& Wang, p. 206. The geometrical idea is that

$$
\begin{aligned}
\vec{u} & =\text { normal vector to } \operatorname{ker} \tilde{U} \\
& =\text { gradient of the function } \tilde{U}(\vec{v})
\end{aligned}
$$


(Here gradient is meant in the geometrical sense of a vector whose inner product with a unit vector yields the directional derivative of the function in that direction.)

Note: Closer spacing of the level surfaces is associated with a longer gradient vector.

## Coordinate representation

Choose a basis. Recall that in an $O N$ basis $\left\{\hat{e}_{j}\right\}$,

$$
\langle\vec{u}, \vec{v}\rangle=\sum_{j=1}^{N} \overline{u^{j}} v^{j} .
$$

Thus $\tilde{U}_{\vec{u}}$ is the linear functional with matrix $\left(\overline{u^{1}}, \ldots, \overline{u^{N}}\right)$. (In particular, in an ON basis the gradient of a real-valued function is represented simply by the row vector of partial derivatives.)

If the basis (call it $\left\{\vec{d}_{j}\right\}$ ) is not ON, then

$$
\langle\vec{u}, \vec{v}\rangle=\sum_{j, k=1}^{N} g_{j k} \overline{u^{j}} v^{k} \equiv g_{j k} \overline{u^{j}} v^{k}
$$

where $g_{j k} \equiv\left\langle\vec{d}_{j}, \vec{d}_{k}\right\rangle$ (the "metric tensor" of differential geometry and general relativity). Note that $g_{j k}$ is symmetric if $\mathcal{F}=\mathbf{R}$ (a condition henceforth referred to briefly as "the real case".) We see that $\tilde{U}_{\vec{u}}$ has now the matrix $\left\{g_{j k} \overline{u^{j}}\right\}$ (where $j$ is summed over, and the free index $k$ varies from 1 to $N$ ). Thus (in the real case) $\left\{g_{j k}\right\}$ is the matrix of $\underline{G}$.

Conversely, given $\tilde{U} \in \mathcal{V}^{*}$ with matrix $\left\{U_{j}\right\}$, so that

$$
\tilde{U}(\vec{v})=U_{j} v^{j},
$$

then the corresponding $\vec{u} \in \mathcal{V}$ is given (in the real case) by

$$
u^{k}=g^{k j} U_{j}
$$

where $\left\{g^{j k}\right\}$ is the matrix of $\underline{G}^{-1}$ - i.e., the inverse matrix of $\left\{g_{j k}\right\}$. The reason for using the same letter for two different matrices - inverse to each other - will become clear later.

## The dual Basis

Suppose for a moment that we do not have an inner product (or ignore it, if we do). Choose a basis, $\left\{\vec{d}_{j}\right\}$, for $\mathcal{V}$, so that

$$
\vec{v}=v^{j} \vec{d}_{j}=\left(\begin{array}{c}
v^{1} \\
v^{2} \\
\vdots \\
v^{N}
\end{array}\right)
$$

Then (definition) the dual basis, $\left\{\tilde{D}^{j}\right\}$, is the basis (for $\mathcal{V}^{*}$ !) consisting of those linear functionals having the matrices

$$
D^{j}=(0,0, \ldots, 0,1,0, \ldots) \quad(1 \text { in } j \text { th place }) .
$$

That is,

$$
\tilde{D}^{j}\left(\overrightarrow{d_{k}}\right) \equiv \delta^{j}{ }_{k}, \quad \forall j, k .
$$

If $\tilde{U}=U_{j} \tilde{D}^{j}$, then

$$
\tilde{U}(\vec{v})=\left[U_{j} \tilde{D}^{j}\right]\left(v^{k} \overrightarrow{d_{k}}\right)=U_{j} v^{j}=\left(U_{1}, U_{2}, \ldots\right)\left(\begin{array}{c}
v^{1} \\
\vdots \\
v^{N}
\end{array}\right)
$$

The Reciprocal basis
If $\mathcal{V}$ is a real inner product space, define the reciprocal basis $\left\{\bar{d}^{j}\right\}$ (in $\mathcal{V}$ !) to be the vectors in $\mathcal{V}$ corresponding to the dual-basis vectors $\tilde{D}^{j}$ under the Riesz isomorphism:

$$
\bar{d}^{j} \equiv \underline{G}^{-1} \tilde{D}^{j}
$$

Equivalent definition (Sec. 14): $\quad \bar{d}^{j}$ is defined by

$$
\left\langle\bar{d}^{j}, \vec{d}_{k}\right\rangle=\delta_{k}^{j}, \quad \forall j, k
$$

Note that the bar in this case does not indicate complex conjugation. (It covers just the symbol " $d$ ", not the superscript.) If $\left\{\vec{d}_{j}\right\}$ is ON, then $g_{j k}=\delta_{j k}$ and hence $\bar{d}^{j}=\vec{d}_{j}$ for all $j$. We "discovered" the reciprocal basis earlier, while constructing projection operators associated with nonorthogonal bases. The reciprocal basis of the reciprocal basis is the original basis.

Given $\vec{v} \in \mathcal{V}$, we may expand it as

$$
\vec{v}=v^{j} \vec{d}_{j}=v_{j} \bar{d}^{j}
$$

Note that

$$
v^{j}=\tilde{D}^{j}(\vec{v})=\left\langle\bar{d}^{j}, \vec{v}\right\rangle
$$

and similarly

$$
v_{j}=\left\langle\vec{d}_{j}, \vec{v}\right\rangle ;
$$

to find the coordinates of a vector with respect to one basis you take the inner products with respect to the elements from the other basis. (Of course, if $\left\{d_{j}\right\}$ is ON, then the two bases are the same and all the formulas we're looking at simplify.) Now we see that

$$
v_{j}=v^{k}\left\langle\vec{d}_{j}, \vec{d}_{k}\right\rangle=g_{j k} v^{k}
$$

the counterpart equation for the other basis is

$$
v^{j}=g^{j k} v_{k}
$$

There follow

$$
\langle\vec{u}, \vec{v}\rangle=u^{j} v_{j}=u_{j} v^{j}=g_{j k} u^{j} v^{k}=g^{j k} u_{j} v_{k} .
$$

After practice, "raising and lowering indices" with $g$ becomes routine; $g$ (with indices up or down) serves as "glue" connecting adjacent vector indices together to form something scalar.

## Geometry of the reciprocal basis

In a two-dimensional space, for instance, $\bar{d}^{1}$ must be orthogonal to $\overrightarrow{d_{2}}$, have positive inner product with $\vec{d}_{1}$, and have length inversely proportional to $\left\|\overrightarrow{d_{1}}\right\|$ so that

$$
\left\langle\bar{d}^{1}, \vec{d}_{1}\right\rangle=1
$$

Corresponding remarks hold for $\bar{d}^{2}$, and we get a picture like this:


Here we see the corresponding contravariant $\left(v^{j}\right)$ and covariant $\left(v_{j}\right)$ components of a vector $\vec{v}$ :


Application: Curvilinear coordinates. (See M. R. Spiegel, Schaum's Outline of Vector Analysis, Chaps. 7 and 8.)

Let $x^{j} \equiv f^{j}\left(\xi^{1}, \ldots, \xi^{N}\right)$. For example,

$$
\begin{array}{lll}
x=r \cos \theta, & x^{1}=x, & x^{2}=y \\
y=r \sin \theta ; & \xi^{1}=r, & \xi^{2}=\theta
\end{array}
$$

Let $\mathcal{V}=\mathbf{R}^{N}$ be the vector space where the Cartesian coordinate vector $\vec{x}$ lives. It is equipped with the standard inner product which makes the natural basis ON. Associated with a coordinate system there are two sets of basis vectors at each point:

1) the normal vectors to the coordinate surfaces $\left(\xi^{j}=\right.$ constant $)$ :

$$
\nabla \xi^{j}=\left(\frac{\partial \xi^{j}}{\partial x^{1}}, \frac{\partial \xi^{j}}{\partial x^{2}}, \ldots\right) \equiv \bar{d}^{j}
$$

From a fundamental point of view, these are best thought of as vectors in $\mathcal{V}^{*}$, or "covectors". In classical vector analysis they are regarded as members of $\mathcal{V}$, however. In effect, the dual-space vectors have been mapped into $\mathcal{V}$ by $\underline{G}^{-1}$; they are a reciprocal basis.
2) the tangent vectors to the coordinate lines $\left(\xi^{k}=\right.$ constant for $\left.k \neq j\right)$ :

$$
\frac{d \vec{x}}{d \xi^{j}}=\left(\begin{array}{c}
\frac{\partial x^{1}}{\partial \xi^{j}} \\
\frac{\partial x^{2}}{\partial \xi^{j}} \\
\vdots
\end{array}\right) \equiv \vec{d}_{j} .
$$

These are ordinary (nondual) vectors (members of $\mathcal{V}$ ), sometimes called "contravariant vectors".


Note that $\left\langle\left(\nabla \xi^{j}\right),\left(\frac{d \vec{x}}{d \xi^{k}}\right)\right\rangle=\frac{\partial \xi^{j}}{\partial \xi^{k}}=\delta^{j}{ }_{k}$. Thus the two sets of vectors form mutually reciprocal bases. (Another way of looking at this equation is that the inner product or pairing of a row of the Jacobian matrix of the coordinate transformation with a column of the inverse of the Jacobian matrix is the corresponding element ( 0 or 1 ) of the unit matrix.)

For polar coordinates, define $\hat{r}$ and $\hat{\theta}$ to be the usual unit vectors. Then you will find that

$$
\begin{array}{ll}
\frac{d \vec{x}}{d r}=\hat{r}, & \frac{d \vec{x}}{d \theta}=r \hat{\theta} \\
\nabla r=\hat{r}, & \nabla \theta=\frac{\hat{\theta}}{r}
\end{array}
$$

(The geometrical interpretation of the two $\theta$ equations is that an increment in $\theta$ changes $\vec{x}$ little if $r$ is small, much if $r$ is large; and that $\theta$ changes rapidly with $\vec{x}$ if $r$ is small, slowly if $r$ is large.) In this case the two bases are OG but not ON, hence they are distinct. Their orthogonality makes it possible to define uniquely the ON basis $\{\hat{r}, \hat{\theta}\}$ sitting halfway between them.


## Change of basis

Again we ignore the inner product for awhile and study the dual basis. Recall our earlier notation:

$$
\begin{aligned}
& \left\{\vec{v}_{j}\right\}=\text { "old" basis, } \quad\left\{\vec{w}_{j}\right\}=\text { "new" basis, } \\
& \vec{x}=\alpha^{j} \vec{v}_{j}=\beta^{k} \vec{w}_{k} \text { is an arbitrary element in } \mathcal{V} .
\end{aligned}
$$

Suppose the transformation (old basis $\mapsto$ new basis) is

$$
\begin{equation*}
\vec{w}_{k}=R_{k}^{j} \vec{v}_{j} \tag{1}
\end{equation*}
$$

(In our previous discussion of change of basis, $R$ was called $S^{-1}$.) Then the transformation (old coordinates $\mapsto$ new coordinates) is

$$
\begin{equation*}
\beta^{k}=\left(R^{-1}\right)^{k}{ }_{j} \alpha^{j} . \tag{2}
\end{equation*}
$$

(One matrix is "contragredient" to the other - the inverse of its transpose.)
Now look at $\tilde{U} \in \mathcal{V}^{*}$ and the two dual bases:

$$
\tilde{U}=\gamma_{j} \tilde{V}^{j}=\delta_{k} \tilde{W}^{k}
$$

Then

$$
\tilde{U}(\vec{x})=\gamma_{j} \alpha^{j}=\delta_{k} \beta^{k}=\delta_{k}\left(R^{-1}\right)^{k}{ }_{j} \alpha^{j} .
$$

Thus

$$
\gamma_{j}=\left(R^{-1}\right)^{k}{ }_{j} \delta_{k}
$$

This may be denoted the transformation (new* coordinates $\mapsto$ old* coordinates), the * standing for the dual space, $\mathcal{V}^{*}$. This result is more useful to us in the inverse direction:

$$
\begin{equation*}
\delta_{k}=R_{k}^{j} \gamma_{j} \tag{3}
\end{equation*}
$$

(old* coordinates $\mapsto$ new* $^{*}$ coordinates). We can rewrite (3) so as to untangle the indices into a normal matrix multiplication:

$$
\delta_{k}=\gamma_{j} R_{k}^{j} \quad \text { or } \quad \delta_{k}=\left(R^{*}\right)_{k}^{j} \gamma_{j} .
$$

Note that (3) "looks like" (1). Historically, vectors in the dual space $\mathcal{V}^{*}$ were called covariant vectors, because under a change of coordinate system (basis) their coordinates transform "along with" the basis vectors in $\mathcal{V}$. The vectors in the original space $\mathcal{V}$ were called contravariant vectors, because their coordinates transform "in the opposite direction from" the basis vectors, as shown by (2). [Two familiar examples of the latter phenomenon are (a) the result of a change of a unit of measurement, and (b) the relation between the "active" rotation of an observer and the "passive" rotation of his view of the world.] Nowadays in many quarters it is considered in poor taste to talk of vectors as "transforming" at all: Vectors are abstract objects which remain the same no matter what coordinate system is used to describe them! Dual vectors are still called covectors, but the "co" just means "dual" to the "ordinary" vectors in $\mathcal{V}$.

## Change of basis as Leibnitz would write it

Writing $\beta$ as $x, \alpha$ as $\xi$, and $R^{-1}$ as $S$, we cast the linear variable change (2) into the form of the general nonlinear change of variables considered earlier:

$$
x^{k}=S^{k}{ }_{j} \xi^{j} .
$$

Note that

$$
\frac{\partial x^{k}}{\partial \xi^{j}}=S_{j}^{k} .
$$

By the inverse function theorem,

$$
\frac{\partial \xi^{j}}{\partial x^{k}}=\left(S^{-1}\right)^{j}{ }_{k}=R_{k}^{j} .
$$

The point of this remark is that a handy way to remember the respective transformation laws of vectors and covectors is through the following prototypes of each:

$$
\begin{array}{cc}
\text { contravector: } & \text { Tangent vector to a curve, } \frac{d \vec{x}(t)}{d t} \\
\text { covector: } & \text { Gradient of a function, }\left\{\frac{\partial f}{\partial x^{k}}\right\}
\end{array}
$$

The transformation laws then follow from the multivariable chain rule:

$$
\begin{align*}
\frac{d x^{k}}{d t} & =\frac{\partial x^{k}}{\partial \xi^{j}} \frac{d \xi^{j}}{d t} \Rightarrow \beta^{k}=\frac{\partial x^{k}}{\partial \xi^{j}} \alpha^{j} \\
\frac{\partial f}{\partial x^{k}} & =\frac{\partial f}{\partial \xi^{j}} \frac{\partial \xi^{j}}{\partial x^{k}} \Rightarrow \delta_{k}=\frac{\partial \xi^{j}}{\partial x^{k}} \gamma_{j}
\end{align*}
$$

These equations remain meaningful for nonlinear coordinate transformations - but that is material for another course.

## The dual operator

Given $\underline{A}: \mathcal{V} \rightarrow \mathcal{U}$, there is a unique, linear $\underline{A}^{*}: \mathcal{U}^{*} \rightarrow \mathcal{V}^{*}$ defined by

$$
\begin{equation*}
\left[\underline{A}^{*} \tilde{U}\right](\vec{v})=\tilde{U}(\underline{A} \vec{v}), \quad \forall \vec{v} \in \mathcal{V} \tag{1}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\underline{A}^{*} \tilde{U} \equiv \tilde{U} \circ \underline{A} \tag{2}
\end{equation*}
$$

(This explicit formula proves the uniqueness and linearity.) In the "pairing" notation which we recently outlawed, this would be written

$$
\begin{equation*}
\left\langle\underline{A}^{*} \tilde{U}, \vec{v}\right\rangle=\langle\tilde{U}, \underline{A} \vec{v}\rangle . \tag{3}
\end{equation*}
$$

Version (3) looks suspiciously like the definition of the adjoint operator in a Hilbert space. Indeed, if $\mathcal{U}$ and $\mathcal{V}$ are inner-product spaces, then $\mathcal{U}^{*}$ is isomorphic to $\mathcal{U}$ and $\mathcal{V}^{*}$ to $\mathcal{V}$ (up to conjugation in the complex case), and under these isomorphisms, $\underline{A}^{*}: \mathcal{U}^{*} \rightarrow \mathcal{V}^{*}$ coincides with $\underline{A}^{*}: \mathcal{U} \rightarrow \mathcal{V}$.

Practical applications of the dual operator are presented by Milne in Secs. 2.7, 2.9, 3.5 (end), and 3.10. Unfortunately, we do not have time to discuss them in the course.

Writing $\tilde{U}(\vec{v})$ as the pairing $\langle\tilde{U}, \vec{v}\rangle$ emphasizes that each $\vec{v} \in \mathcal{V}$ defines a linear functional on $\mathcal{V}^{*}$ :

$$
[\underline{J} \vec{v}](\tilde{U}) \equiv \tilde{U}(\vec{v}) .
$$

That is, $\mathcal{V}$ is isomorphic to a subspace $\underline{J}[\mathcal{V}] \subset\left(\mathcal{V}^{*}\right)^{*}$.
If $\operatorname{dim} \mathcal{V}<\infty$ (and for many infinite-dimensional spaces too), $\underline{J}[\mathcal{V}]$ is equal to $\mathcal{V}^{* *}$ there are no other linear functionals on $\mathcal{V}^{*}$. When this is true, $\mathcal{V}$ is called reflexive; $\mathcal{V}$ and $\mathcal{V}^{* *}$ are "the same".

Note that the isomorphism $\underline{J}: \mathcal{V} \leftrightarrow \mathcal{V}^{* *}$ is fixed - independent of a choice of basis or any other structure. In contrast, the isomorphism $\underline{G}: \mathcal{V} \leftrightarrow \mathcal{V}^{*}$ depends on the inner product. If there is no inner product, $\mathcal{V}$ is certainly isomorphic to $\mathcal{V}^{*}$ because they have the same dimension (speaking now of finite-dimensional spaces), but there is no preferred ("natural" or "canonical") isomorphism. (The apparently obvious mapping $\vec{v}_{j} \leftrightarrow \tilde{V}^{j}$ is basis-dependent. It disagrees with $\vec{v}_{j} \leftrightarrow \underline{G} \vec{v}_{j}$ if the basis is not ON.)

