
Factor spaces (Sec. 11)

Partitions and equivalence relations (See Sec. 2)

Definition: A partition of a set A is a way of representing A as a union of disjoint sets:

A = A1 ∪A2 · · ·
︸ ︷︷ ︸

possibly uncountable

≡
⋃

j∈J

Aj , Aj ∩ Ak = ∅ if j 6= k.
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Definition: An equivalence relation “≃” on A is a relation [a subset of A × A, or a
“property” of two objects in A] which is

1) reflexive: x ≃ x (∀x ∈ A),

2) symmetric: x ≃ y ⇒ y ≃ x.

3) transitive: x ≃ y and y ≃ z ⇒ x ≃ z.

Examples

1. Equality (of numbers, say)

2. Congruence of triangles

3. Similarity of triangles

4. Similarity of matrices: x = R−1yR

5. f(x) = f(y) (for a fixed function f)

Theorem. Every equivalence relation defines a partition, and vice versa.
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Proof:

⇐: Given a partition, call x and y equivalent (x ≃ y) if x and y belong to the same
component Aj .

⇒: Given an equivalence relation, define x (also denoted [x]) to be the set of elements
equivalent to x:

x = { y ∈ A : x ≃ y }.

Then x = y iff x ≃ y. If x 6≃ y, then x ∩ y = ∅ (else transitivity would be violated).
Reflexivity ⇒ x ∈ x. Thus A is the disjoint union of the sets x (called equivalence
classes).

Looking back at the examples, we can see how each of them divides the set of objects
under consideration into equivalence classes. In the case of triangles, the first three ex-
amples constitute increasingly coarse classifications; at each step the previous equivalence
classes are combined into larger classes.

Definition of a factor space

Let U be a subspace of V. Given ~x ∈ V, define x ≡ { ~x + ~u : ~u ∈ U }. Equivalently,
define ~x ≃ ~y to mean that ~x − ~y ∈ U , and let {x} be the corresponding collection of
equivalence classes. This partition is called the factor space (or quotient space) V/U .
[“/” is pronounced “mod” or “modulo”.]
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Note: ~x ∈ U ⇐⇒ x = U = ~0.

Geometrically, subspaces are lines, planes, . . . through the origin. Elements of factor
spaces are lines, planes, . . . that don’t pass through the origin; elements of V/U are parallel
to U .

The elements of V/U are called cosets or affine subspaces (as well as “equivalence
classes”).
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Vector operations in V/U

Let f(~x) be a function on V such that

~x ≃ ~y ⇒ f(~x) = f(~y).

Thus f is constant on each coset. We can identify f with a function (also called f) on
V/U , defined by:

α ∈ V/U ⇒ f(α) ≡ f(~x) for any ~x ∈ α

or, more briefly,

f(x) ≡ f(~x) (∀x ∈ V/U). (‡)

(~x is called a representative of x.) We say that f lifts to a function on V/U .

Remark: In (‡) (and elsewhere later) we’re using x as a variable for an arbitrary element
of V/U ; then we use x to stand for an arbitrary element of x. This is OK as long as you
don’t forget that x = y for many ~y’s not equal to ~x. When we consider a coset and call it
x, we are not necessarily committed to any particular member of the coset to be called “x”.
Whenever this somewhat sloppy notation would cause a danger of confusion, it is better
to call the coset α (say) instead of x.

Now consider g:V → V defined by g(~x) ≡ 3~x. (The 3 could be any scalar; we
are considering a particular one only for concreteness.) This function lifts, if we take a
quotient at the codomain end of the mapping, too:

3x ≡ (3~x).

(In the picture, 3x is the plane parallel to x but 3 times farther from U .)

Similarly, we can define the sum of two cosets by

x+ y = ~x+ ~y.

Otherwise stated: Pick an arbitrary ~x ∈ x and an arbitrary ~y ∈ y. Find the coset containing
the vector ~x + ~y. This coset will be independent of which ~x and ~y you chose, and it is
defined to be x+ y.
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Theorem 11.2. V/U is a vector space under addition and scalar multiplication as defined

above. The zero vector in this space is 0 ≡ ~0 = U .

Proof: left to homework (along with the details of the argument that the vector opera-
tions do indeed lift).

The standard application

Let A:V → W be a linear operator. Then ker A = (solution space of homogeneous

equation A~v = ~0) is a subspace of V. For fixed ~b ∈ ran A ⊆ W, the solution space of the

inhomogeneous equation A~v = ~b is a coset in V parallel to kerA; i.e., a member of V/kerA.

[Proof: A~v1 = ~b and A~v2 = ~b ⇒ A(~v1 − ~v2) = ~0, so all solutions belong to the same

coset. Conversely, A~u = ~0 and A~v1 = ~b ⇒ A(~v1 + ~u) = ~b, so the entire coset containing a

solution consists of solutions.] The solution set of A~v = ~b1 +~b2 is the factor-space sum of

the solution sets for ~b1 and ~b2 (“superposition principle”). Simlarly for scalar multiples.

Example: In calculus, the indefinite integral of f is the space of solutions of the inho-
mogeneous linear equation dy/dx = f(x). An indefinite integral is a vector in the factor
space

(continuous functions)/(constant functions)

(the constants being the kernel of d/dx). In integral tables each coset is represented by an
arbitrary element in it: ∫

cosx dx = sinx.

But in textbooks we write ∫

cosx dx = sinx+ C

as a reminder that we really mean the whole coset. We calculate the integral of a sum by
adding cosets:

∫

(x+ cosx) dx =
x2

2
+ sinx+ C

[not x2

2
+ C1 + sinx+ C2, since we’re adding cosets, not functions].

Factor spaces in everyday life (More examples)

1. Equivalence classes of square-integrable functions (a step toward Lp spaces)

This has already been discussed to some extent (and will be a central ingredient in
Math. 641–642).
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Let X = (a, b) ⊆ R. (For that matter, X could be any set on which an integral can
be defined.) Let

L2(X) = { f :X → F :

∫

X

|f(x)|2 dx < ∞}.

This is a vector space. A natural candidate for inner product is

f · g ≡

∫

X

f(x) g(x)dx.

However, it doesn’t satisfy the positive-definiteness condition. We can cure this by “identi-
fying” any two functions whose difference has norm zero (e.g., two functions that coincide
except on a finite set): Let

I ≡ { f ∈ L2(X) :

∫

X

|f(x)|2 dx = 0 }

and let

L2(X) ≡ L2(X)/I.

Then f · g lifts to an inner product on L2, and the latter is what we mean when we talk
about the Hilbert space of “square-integrable functions”.

An f ∈ L2 contains at most one continuous representative (since a nonzero continuous
function can’t belong to I). If f contains no continuous function, it has no “canonical”
representative. But if we’re studying solutions of differential equations, the interesting
functions usually will be continuous, and the temptation to smudge the distinction between
f and f will be irresistible.

2. Equivalence classes of singular functions (a step toward renormalization theory
for quantized fields)

A. Consider a function f such that |f(x)| → ∞ as x → 0. For example,

f(x) =
ex

x
=

cosh x

x
+

sinh x

x
. (∗)

Can we divide f into its “singular part” plus its “smooth part”? No, (∗) shows that this
idea is ambiguous. In fact, any smooth function whatsoever could be separated out:

f(x) = f(x)− s(x)
︸ ︷︷ ︸

singular

+ s(x)
︸︷︷︸

smooth

for any smooth s.

The point is that a singular function plus a smooth function is still singular. Therefore,
the “singular part” of f is defined only modulo smooth functions.
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Still, it makes sense to observe that f(x) ∼ 1
x
as x → 0 (rather than ∼ 2

x
or ∼ 1

x2 ,
say). Indeed, f has the Laurent series

ex

x
∼

1

x
+ 1 +

x

2
+ · · · .

Extracting the singular term(s) of such a series can be regarded as a calculation of f ’s
coset in the space

(possibly singular functions)/(smooth functions).

(This is still rather vague, because I have not specified a domain for the functions nor
specified how pathological the elements of the space of singular functions are allowed to
be. The essential algebraic point is independent of such technical analytical details.)

Earlier we saw that many a coset in L2 has a “natural” representative — its unique
continuous member. In the present situation, similarly, whenever f has a Laurent series
there is a natural convention for defining its singular part; in our example, it is

fsing(x) ≡
1

x
, fsm(x) =

ex − 1

x
.

B. Suppose, however, that f(x) ∼ lnx as x → 0. Consider, for example,

f(x) = ln
x

y − x
.

For fixed y > 0, this is defined for 0 < x < y. Note that

f(x) = ln

x
y

1− x
y

= ln
x

y
− ln

(

1−
x

y

)

.

Now use the fact that

ln (1 + z) ∼ z −
1

2
z2 +

1

3
z3 − · · · as z → 0.

You get

f(x) ∼ ln
x

y
+

x

y
+

1

2

x2

y2
+

1

3

x3

y3
+ · · · .

It’s tempting to say

fsing ≡ ln
x

y
, fsm =

x

y
+ · · · .

But this is too arbitrary to be justified. Note that

ln
x

y
= ln

(

cx
1

cy

)

= ln cx− ln cy for arbitrary c > 0,
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and the − ln cy is a nonsingular term (as a function of x). So we could equally well write

fsing ≡ ln cx, fsm = − ln cy +
x

y
+

1

2

x2

y2
+ · · · . (†)

This doesn’t essentially change what we mean by fsing — it’s still the same coset. But
our formula for fsm contains an inherently arbitrary constant, c. [It’s no good saying that
c = 1 is the “natural” choice. In a physical application, x and y will usually have physical
dimensions, say length, and 1/c will be a quantity of the same type. If we set c = 1 and
then change the unit of length from inches to feet, suddenly c becomes 12!]

In modern theories of fundamental physics, certain constants of nature, such as the
masses of elementary particles and the ranges of their interactions, can arise by mechanisms
of this type. These constants are not determined by the theory one starts with; they
must be measured experimentally. (This is called “dimensional transmutation”, because a
constant without physical dimensions in the original theory can be replaced by a length
or a mass in the final theory, which has been “made finite”, or “renormalized”.) The
notorious “renormalization” or “subtraction of infinity” in quantum field theory is basically
an operation of subtracting the singular part of a function to obtain a smooth remainder,
and it is afflicted by the ambiguities we have seen to be inherent in such a calculation.

C. This application has another aspect, which stands the mathematics of the previous
discussion on its head, so to speak. Frequently in a quantum-field-theoretic calculation, the
singular terms in the expansion of a function are especially simple in their dependence on
some other variable in the problem. This is modeled in our example, (†), in the following
way: Note that fsing is independent of y, and that changing the arbitrary constant c
modifies fsm only by adding a constant (since ln c′y = ln cy + ln(c′/c)). It is therefore
possible to say with a minimum of ambiguity what is meant by “the smooth part of f”.
Although fsm is not well-defined as a function, it is well-defined as a member of the factor
space

(smooth functions)/(smooth functions independent of y).

(Recall, in contrast, that when we started this discussion we concluded that the smooth
part of the function in (∗) was totally ill-defined, unless we introduced an arbitrary con-
vention involving Laurent series.) This is really the crux of renormalization theory. In a
physical calculation, one is really interested in defining fsm . The embarrasing “infinity”,
fsing , fortunately turns out to be so simple in its dependence on the physical variables of
the problem that it can be regarded as physically trivial. This is what justifies ignoring it,
even though it is infinite! The only thing that remains of the singular terms in the final
result of a calculation involving renormalization is an ambiguous smooth term, reflecting
the fact that all that the theory determines is the coset of the answer modulo the subspace
of “physically trivial” functions.
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