
Hermitian and unitary operators [still Sec. 18]

Let V be a Hilbert space. (This includes finite-dimensional inner product spaces!) I
shall phrase the initial definitions in sufficient generality to cover the case of “unbounded”
operators.

Definitions: Let A be a linear operator with codomain V whose domain is a subspace of
V. A is Hermitian [or symmetric] if

A~v1 · ~v2 = ~v1 ·A~v2, ∀~v1, ~v2 ∈ dom A.

A is self-adjoint if A∗ = A.

Remark: The usual terminological correlation is

Hermitian ↔ complex space

symmetric ↔ real space.

If dim V = ∞, we may need to consider A such that dom A is not equal to all of
V. Example: As we have seen earlier, if A is a differential operator, then dom A must
contain only sufficiently differentiable functions ⊂ L2. However, as previously remarked
without proof, if A can be defined everywhere in the Hilbert space V, and if it satisfies the
additional technical assumption of boundedness (equivalent to continuity), then A∗ will be
defined everywhere in V. In that situation, as in finite dimensions, the distinction between
Hermiticity and self-adjointness is unnecessary:

Theorem 18.5′. If dom A = V = dom A∗, then

A Hermitian ⇐⇒ A self-adjoint.

(If dom A 6= V and A is Hermitian, then dom A will be a subset of dom A∗ but may not
be all of it; in the latter case, A is not self-adjoint and A∗ may not even be Hermitian.)

Proof: Obvious from definitions.

Remark: Most of the special classes of operators about which we need to prove theorems
in this course, such as projections and isometries (see below), are in fact always bounded
and everywhere defined. Therefore, we can deal freely with their adjoints without worrying
about domain technicalities. The rest of the present discussion is confined to that case.

Definition: A is anti-Hermitian [or skew-symmetric, etc.] if A~v1 · ~v2 = −~v1 · A~v2 ; in
other words, A∗ = −A.

1



Theorem. With respect to an ON basis, A is Hermitian iff A is represented by an Her-
mitian matrix. (See next definition.) (Similarly for (real) symmetric, anti-Hermitian, etc.)

Definitions: {Ajk} is Hermitian if Akj = Ajk,
symmetric if Akj = Ajk, . . . .

Proof of theorem: Recall that (A~v)k =
∑
j A

k
jv
j defines A. Let {êj}nj=1 be the ON

basis. Then Akj = (Aêj) · êk. [Check: (Aêj) · êk = (Aêj)
k =

∑
lA

k
l(êj)

l = Akj .] On the
other hand,

Ajk = (Aêk) · êj = êj · (Aêk) = (Aêj) · êk,

QED.

Quicker proof: This is a corollary of the theorem that

matrix of adjoint = transpose of matrix.

Theorem 18.6.

(a) V real ⇒ L(V;V) = S(V;V) ⊕ A(V;V), where S and A are the symmetric and
antisymmetric operators. That is, any L ∈ L can be uniquely decomposed as

L = S +A, S ∈ S, A ∈ A.

(b) V complex ⇒ S (the Hermitian operators) and A are not subspaces: indeed, A = iS.
The decomposition still exists, but it is not a direct sum.

Proof: S = 1
2 (L+ L∗), A = 1

2 (L− L∗).

Uniqueness: If B is both symmetric and antisymmetric, then B = 0. Thus the sum is
direct.

Definitions: A : V → V is isometric (or is an isometry) if

(A~v1) · (A~v2) = ~v1 · ~v2, ∀~v1, ~v2 ∈ V.

A is unitary if A−1 = A∗ (complex case).

A is orthogonal if A−1 = A∗ ≡ transpose of A (real case).

Remarks:
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1. The definitions of “unitary” and “orthogonal” carry over to matrices with respect to
ON bases.

2. For A ∈ L(V;U), V 6= U , the definitions of “isometric” and “unitary” still make
sense. (However, instead of “unitary” one usually says “isometric isomorphism” in
this case.) Part (e) of the next theorem doesn’t hold if dim V 6= dim U . Part (a) of
the theorem shows that no isometries exist if dim U < dimV.

3. Bowen & Wang do not make a distinction between isometries and unitary operators.
This is partly explained by their finite-dimensional focus. It is partly justified by the
observation that an isometry becomes a unitary operator if its range is taken to be
the codomain (see part (d) of the theorem).

Theorem 18.7′,9′.

(a) Isometric ⇒ injective.

(b) Isometric ⇐⇒ A∗ is a left inverse (for A).

(c) Unitary ⇒ isometric.

(d) Isometric & surjective ⇐⇒ unitary.

(e) dim V <∞, A ∈ L(V;V) ⇒ : Isometric ⇐⇒ unitary.

Proof:

(a) It suffices to show ker A = {~0}.

A~v = ~0 ⇒ 0 = A~v ·A~v = ~v · ~v ⇒ ~v = ~0.

(b) Isometric ⇐⇒ (A~v1) · (A~v2) = ~v1 · ~v2

⇐⇒ ~v1 · (A∗A~v2) = ~v1 · ~v2 (∀~v1)

⇐⇒ A∗A~v2 = ~v2 (∀~v2)

⇐⇒ A∗A = 1.

(dom A∗ = V since A is bounded.)

(c) Unitary ⇐⇒ A−1 = A∗ ⇐⇒ A∗A = 1 and AA∗ = 1.
Therefore A is isometric by (b).

(d) Injective & surjective ⇐⇒ invertible ⇐⇒ left inverse = inverse.
But isometric ⇐⇒ the left inverse is A∗. So conclusion follows from proof of (c).
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(e) For a finite dimensional space, injective ⇐⇒ surjective. Conclusion follows from (b)
or (d).

Remark: dim V = ∞ ⇒ (e) not true: Let A = right shift in `2 (the space of square-
summable sequences):

A(x1, x2, . . . ) ≡ (0, x1, x2, . . . ).

Clearly A is isometric:
∑
xjyj < ∞ is unchanged. But A is not surjective, hence not

unitary. (A−1 doesn’t exist.)

Note: A∗ = left shift:
A∗(y1, y2, y3, . . . ) = (y2, y3, . . . ).

(y1, y2, . . . ) ·A(x1, x2, . . . ) = (y1, y2, . . .) · (0, x1, x2, . . . )

=
∞∑
j=1

yj+1xj

= (y2, y3, . . . ) · (x1, x2, . . . ). QED

One can easily verify that A∗A = 1. What is AA∗?

AA∗(x1, x2, x3, . . . ) = (0, x2, x3, . . . ).

Therefore, AA∗ = P ≡ projection onto ran A along ker A∗. This is a general property:

Theorem. A isometric ⇒ A∗A = 1 and AA∗ = the orthogonal projection onto ran
A. (For the moment, “orthogonal” for projections means ran P ⊥ ker P . An alternative
definition will appear soon.)

Proof: The only thing not already proved is that AA∗ = P in case ran A 6= V. Well,
(AA∗)(AA∗) = A(A∗A)A∗ = AA∗, so it’s a projection, P . Also,

~v ∈ ran A ⇒ AA∗~v = AA∗A~u = A~u = ~v ⇒ ~v ∈ ran P ,

and
~v ∈ (ran A)⊥ = ker A∗ ⇒ A∗~v = ~0 ⇒ AA∗~v = ~0 ⇒ ~v ∈ ker P .

It follows that ran A = ran P and (ran A)⊥ = ker P . Finally, P~v = A(A∗~v) ⇒ ranP ⊆
ranA, so ranP = ranA.

Theorem 18.8. A isometric ⇐⇒ ‖A~v‖ = ‖~v‖, ∀~v. (I.e., an operator preserves the
inner product if and only if it preserves the norm.)

Proof: ⇒ is trivial; ⇐ follows from the polarization identity (see Example 2A in the
section of these notes introducing inner products).
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Theorem. {êj} an ON basis ⇒

{Aêj} is an

{
ON set if A is isometric,

ON basis if A is unitary

Proof: Write out A∗A = 1 as a matrix equation:∑
l

AljA
l
k = δjk.

That is,

(Aêk) · (Aêj) =

{
0 if j 6= k,

1 if j = k.

Moreover, if A is surjective (the unitary case), then the image of the basis spans V, hence
is a basis. (This theorem also follows more abstractly from the definitions, but this matrix
observation is really more instructive.)

Theorem. Let dim V <∞ and let A be a matrix representing the unitary or orthogonal
operator A (with respect to the same basis for V as both domain and codomain). Then
|detA| = 1.

Proof: Later we will see that the determinant is independent of the basis chosen. For now
consider a matrix with respect to an ON basis, and note that det A∗ = detA. Therefore,

|detA|2 = det (A∗A) = det 1 = 1.

In the complex case, det A = eiθ for some θ ∈ R. In the real case, det A = ±1.
An orthogonal transformation with det A = +1 is a rotation. If det A = −1, a rotation
(possibly trivial) is combined with a reflection, such as

(x1, x2, . . . ) 7→ (−x1, x2, . . . ).

Motivational remarks: Isometric isomorphisms preserve the structure of inner product
spaces, so they are natural things to study. Self-adjoint operators lead to nice and powerful
theorems and also appear in many applications. In particular, they “generate” unitary
groups: A self-adjoint ⇒ eiAt unitary and eiAt1eiAt2 = eiA(t1+t2); equivalently, A =
−i ddte

iAt
∣∣
t=0

. (The definition of the exponential of an operator will come later.)

Now the unfinished business about projections:

Definition: An orthogonal projection is a P ∈ L(V;V) satisfying

P 2 = P = P ∗.
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Remark: An orthogonal projection is not an orthogonal operator! (P−1 doesn’t even
exist unless P = 1.) It is a self-adjoint operator.

To justify this definition we need:

Theorem 18.10. If P is a projection, then

P = P ∗ ⇐⇒ ranP = (ker P )⊥.

That is, orthogonal projections correspond to orthogonal direct-sum decompositions. P is
the projection onto ranP along its orthogonal complement.

Proof:

⇒: By Theorem 18.3,
ranP = (ker P ∗)⊥ = (ker P )⊥.

(We don’t have to worry about proving ranP closed in the infinite-dimensional case,
because in Theorem 17.3 we already established that ranP is a direct complement of
ker P .)

⇐: By hypothesis, (P~u) ·~v = 0 for all ~v ∈ ker P and all ~u ∈ V. Every ~w ∈ V has the form
~w = P ~w + (1− P )~w, where the second term is in ker P . Therefore,

(P~u) · ~w = (P~u) · (P ~w).

By symmetry,
~u · (P ~w) = (P~u) · (P ~w).

Equality of the left sides of these equations says that P = P ∗, since ~u and ~w are
arbitrary.

Example: In the context of the theorem about the projection P ≡ AA∗ onto the range
of an isometry, we have (AA∗)∗ = A∗∗A∗ = AA∗. This confirms that P is an orthogonal
projection. (Since isometries and their adjoints are bounded operators, A∗∗ is always equal
to A, even in infinite dimensions.)
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