Homework 1, due September 5

0 . If you haven't already done so, contribute a one-paragraph "autobiography" to the "Let's Get Acquainted" Discussion Forum in eCampus.

1-7. Bowen \& Wang, pp. 10-11 (Chap. 0).
(Do matrix problems by the the methods of your choice, not necessarily by the determinant methods in the text.)
8. [Bowen © Wang, p. 45] Let \mathcal{V} and \mathcal{U} be vector spaces. Show that the set $\mathcal{V} \times \mathcal{U}$ is a vector space with the definitions

$$
(\vec{u}, \vec{x})+(\vec{v}, \vec{y})=(\vec{u}+\vec{v}, \vec{x}+\vec{y})
$$

and

$$
\lambda(\vec{u}, \vec{x})=(\lambda \vec{u}, \lambda \vec{x}),
$$

where $\vec{u}, \vec{v} \in \mathcal{V} ; \vec{x}, \vec{y} \in \mathcal{U} ;$ and $\lambda \in \mathcal{F}$.

