Homework 12, due November 28

- 1. Recall that <u>A</u> is positive if $\vec{v} \cdot \underline{A}\vec{v} \ge 0$, $\forall \vec{v}$.
 - (a) Prove that every positive operator in a [finite-dimensional] complex inner-product space is Hermitian.
 - (b) Give a counterexample for real inner-product spaces. HINT: Find a nonsymmetric 2×2 matrix A for which $\vec{v} \cdot A\vec{v}$ is a square for all $\vec{v} \in \mathbf{R}^2$.
- 2. Prove the polar decomposition theorem for the case where \underline{A} is not invertible:
 - (a) Show that $\ker(\underline{A}^*\underline{A}) = \ker \underline{A}$.
 - (b) Use this fact to construct a suitable \underline{U} for this case. (\underline{U} will not be unique.) HINT: Define \underline{U} on $(\ker \underline{A})^{\perp}$ (using the spectral theorem to construct a substitute for $(\underline{A}^*\underline{A})^{-\frac{1}{2}}$) and on ker A separately.
- 3. Why is Sylvester's formula not correct when <u>A</u> has a nondiagonal Jordan canonical form? HINT: Use formula (#).