Homework 12, due November 28

1. Recall that \underline{A} is positive if $\vec{v} \cdot \underline{A} \vec{v} \geq 0, \quad \forall \vec{v}$.
(a) Prove that every positive operator in a [finite-dimensional] complex inner-product space is Hermitian.
(b) Give a counterexample for real inner-product spaces. Hint: Find a nonsymmetric 2×2 matrix A for which $\vec{v} \cdot A \vec{v}$ is a square for all $\vec{v} \in \mathbf{R}^{2}$.
2. Prove the polar decomposition theorem for the case where \underline{A} is not invertible:
(a) Show that $\operatorname{ker}\left(\underline{A}^{*} \underline{A}\right)=\operatorname{ker} \underline{A}$.
(b) Use this fact to construct a suitable \underline{U} for this case. (\underline{U} will not be unique.) Hint: Define \underline{U} on $(\operatorname{ker} \underline{A})^{\perp}$ (using the spectral theorem to construct a substitute for $\left.\left(\underline{A}^{*} \underline{A}\right)^{-\frac{1}{2}}\right)$ and on ker A separately.
3. Why is Sylvester's formula not correct when \underline{A} has a nondiagonal Jordan canonical form? Hint: Use formula (\#).
