Homework 13, due December 5

1. Let $L_{\vec{\omega}}$ be the antisymmetric matrix corresponding to the vector $\vec{\omega} \in \mathbf{R}^{3}$ under the isomorphism defined by the vector cross product. Verify that (for orthogonal O) $O L_{\vec{\omega}} O^{-1}=(\operatorname{det} O) L_{O \vec{\omega}}$. (Use the hint in the notes.)
2. Define a new coordinate system in \mathbf{R}^{2} by

$$
\begin{aligned}
& x=\xi+\eta, \\
& y=\eta .
\end{aligned}
$$

Calculate the Cartesian components of the mutually reciprocal bases

$$
\{\nabla \xi, \nabla \eta\} \quad \text { and } \quad\left\{\frac{d \vec{x}}{d \xi}, \frac{d \vec{x}}{d \eta}\right\}
$$

Sketch the results.
3. Fill in the details of the calculation of the mutually reciprocal bases for polar coordinates in the plane.
4. Exercise 30.4, pp. 200-201.
5. (some unfinished business) Let \mathcal{V} and \mathcal{U} be finite-dimensional inner-product spaces and $\underline{A}: \mathcal{V} \rightarrow \mathcal{U}$ be an operator. Return in your notes to the definition of the adjoint (not dual) operator $\underline{A}^{*}: \mathcal{U} \rightarrow \mathcal{V}$ and prove the assertion there that $\operatorname{dom} \underline{A}^{*}=$ all of \mathcal{U}. Hint: Use the Riesz representation theorem (finite-dimensional version).
6. Show that a multilinear function on $\mathcal{V}_{1} \times \cdots \times \mathcal{V}_{r}$ is equivalent (under a natural isomorphism) to a linear functional on $\mathcal{V}_{1} \otimes \cdots \otimes \mathcal{V}_{r}$ (and totally different from a linear functional on $\mathcal{V}_{1} \oplus \cdots \oplus \mathcal{V}_{r} \cong \mathcal{V}_{1} \times \cdots \times \mathcal{V}_{r}$.

